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Abstract—We study the problem of optimally and simultaneously sizing solar photovoltaic (PV) and storage capacity in order to partly

or completely offset grid usage. While prior work offers some insights, researchers typically consider only a single sizing approach.

In contrast, we use a firm theoretical foundation to compare and contrast sizing approaches based on robust simulation, robust

optimization, and stochastic network calculus. We evaluate the robustness and computational complexity of these approaches in a

realistic setting to provide practical, robust advice on system sizing.

Index Terms—Solar Energy, Batteries, Sizing, Dimensioning
Ç

1 INTRODUCTION

IN the last few years, the prices of solar panels and stor-
age have dropped dramatically, putting them in reach

of many consumers. Companies such as Trina, Yingli,
and Canadian Solar offer solar panels at a cost of less
than USD 0.5/Watt, and companies such as Tesla, Son-
nen, and Moixa provide off-the-shelf (albeit expensive)
storage solutions.

Consider an entity that wants to purchase and install
solar PV panels and storage in order to partly or completely
offset grid usage.1 How much of each should they buy? If
the budget is not a constraint, then both can be generously
sized, with ample slack capacity. However, given the high
cost of storage, budget is often a binding constraint. Thus,
we would like to provide practical guidance on the smallest
possible sizing2 to adequately meet the anticipated load.
This is the subject of our work.

We expect many entities to face such a sizing problem in
the future. These include individuals, small companies, and

building operators faced with the rising cost of grid-pro-
vided electricity.

While prior work on this topic offers some insights,
researchers typically consider only a single sizing approach [1],
[2], [3], [4], [5], [6]. Moreover, the approaches advocated by
some past researchers results in sizing decisions that may not
be robust to perturbations in the inputs. In our work, we
attempt to provide practical, robust advice on system sizing. To
do so, we compare and contrast multiple sizing approaches,
extending well-known approaches as necessary to reduce
them to practice.

The approaches we study use historical solar generation
and electricity consumption (load) time series as input to com-
pute the sizing. Given that this data is difficult to obtain for a
horizon long enough to adequately capture the non-stationar-
ity of the underlying stochastic processes, we assume that
past and future samples are drawn from the same distribu-
tion. Nevertheless, any practical data-driven approach must
take steps to prevent overfitting to historical data.

In our work, we tackle the problem of overfitting by
extending three approaches to computing a robust sizing: sim-
ulation, mathematical programming, and stochastic network
calculus. With simulation and mathematical programming
approaches, we compute a robust sizing by using upper prob-
ability bounds on the sizings that meet the performance
requirements on historical data; with stochastic network
calculus, roughly speaking, we reduce the available data to a
set of representative features that are then used to compute
probability bounds on the performance targets achieved by
any given sizing (this statement is made more precise later in
the paper).

We make three key contributions:

� We provide a firm theoretical foundation for robust
and practical sizing of both solar PV generation and
storage based on three approaches: simulation, opti-
mization, and stochastic network calculus.

� We make contributions to the state-of-the-art in sto-
chastic network calculus.
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1. The former case corresponds to that of an entity that remains grid-
connected but wants to reduce its overall cost for electricity and the lat-
ter corresponds to an off-grid scenario. We treat them both identically
in our work.

2. By sizing, we refer to the power/energy size of the storage in kW/
kWh and the size of solar generation in kWp.
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� We evaluate the robustness and computational
complexity of these approaches in a realistic setting.

We have publicly released the program modules for
computing robust PV-storage system sizing via simulation
and stochastic network calculus [7].

2 RELATED WORK

Prior work on sizing approaches for energy storage in the
presence of renewable energy sources can be grouped into
three main classes: mathematical programming, simulation,
and analytical methods. We sketch these approaches here,
with a survey of representative work, deferring details of
each approach to Section 5.

2.1 Mathematical Programming

There exist many methods for solving sizing optimization
problems. In this paper, we focus on mathematical pro-
gramming, which is a scenario-based approach. It requires
modelling the system as a set of parameters and variables
that are constrained to represent the capabilities of the phys-
ical system being modelled and an objective function repre-
senting the system target. Importantly, it typically does not
model the operating policy; instead, the optimal operation
is an output of the optimization program, and is dependent
on the inputs. An algorithm, or solver, is used to search the
space of feasible solutions to find the one which maximizes
(or minimizes) the objective function for the given parame-
ters. For example, in Reference [8], the problem of sizing a
battery to meet the energy demands of a microgrid is for-
mulated as a mixed-integer linear program. In Reference
[9], the problem of sizing batteries and solar panels under a
fixed budget to maximize the revenue of a solar farm is for-
mulated as a non-linear optimization problem, which is lin-
earized to reduce the solving time.

Another notable optimization approach is to formulate a
robust optimization problem [10], in which the objective func-
tion is optimized even when the inputs are perturbed. We
do not cover robust optimization in this paper; rather, we
present a simpler approach to dealing with uncertainties in
the input parameters.

2.2 Simulation

Simulations are scenario-based sizing approaches that pro-
vide optimal system sizing for a given trajectory (i.e, a time
series) for load and PV generation. They are versatile: a sim-
ulation program can evaluate different combinations of PV
panel and battery sizes, calculating metrics such as loss of
load probability (LOLP) [4], expected unserved energy
(EUE), and operating cost [11]. The simulated system can be
operated using virtually any operating strategy, such as
those proposed in [2], [3], [4], [6], and can implement com-
plex battery models [11].

2.3 Analytical Methods

Inspired by the analogy between energy buffering by batter-
ies and data buffering in computer networks, a variety of
analytical methods have been proposed for storage capacity
sizing in the literature. For example, in Reference [12] the
system is modelled as a cyclic non-homogenous Markov
chain, and the authors propose a steady-state analysis to

determine whether a given system size is sufficient to meet
a target LOLP. In Reference [13], the authors use a probabi-
listic tail bound on the aggregate of many regulated energy
demand loads to jointly size the battery capacity and trans-
formers for a certain LOLP in a residential setting.

Among existing analytical approaches, stochastic net-
work calculus (SNC) [14] has shown great robustness and
accuracy. This approach has been used in several applica-
tions: battery sizing to reduce reliance on diesel generators
in rural areas with unreliable grid connections [15], energy
demand management in a fleet of electric car charging sta-
tions [16], gaining energy flexibility through heating/cool-
ing systems in data centres [17], supply-demand matching
for prosumers [18], [19], [20], and profit maximization for
renewables in electricity markets [21].

Applying stochastic network calculus to energy systems
has some subtleties, due to the unique statistical properties
of the underlying energy processes and the storage model
in use. This has led to a series of incremental improvements
in this field of research. The idea of using stochastic network
calculus for energy systems was proposed in [19], where the
authors assume ideal storage devices and use affine func-
tions to separately model the long-term behavior of each of
energy demand and energy supply. In Reference [18], the
authors improve this approach by assuming a more realistic
storage model and more complicated uni-variate envelopes
for energy demand and supply. It is shown in [21] that uni-
variate envelopes cannot properly capture the statistical
properties of solar power due to its substantial seasonality;
hence, introducing bi-variate envelopes to separately model
the long term behavior of energy demand and supply. In
this paper, we advance the state-of-the-art as discussed in
Section 7.2.

3 GOAL

At a high level, the goal of our work is to provide robust,
practical advice on how to size both solar panels and stor-
age to partly or completely offset grid usage. This section
discusses the inputs and objective of this sizing problem.

3.1 Inputs

It is reasonable to assume that an entity making a sizing
decision would have access to a representative set of load
traces, especially with the widespread deployment of smart
meters that typically measure hourly load.3 It is also possi-
ble to obtain hourly solar radiation traces in the geographi-
cal location of the entity, for most parts of the world [22],
and calculate the corresponding power generated from PV
panels with reasonable accuracy [23] .

In keeping with prior work, we make the assumption
that these historical traces are generally representative of
loads and generation. Nevertheless, the future will never
exactly mimic the past; if it did, we would be able to make
decisions with perfect information. Thus, the sizing decision
must be robust to perturbations in the inputs, i.e., to ‘small’
changes in the solar irradiation or loads (we make this pre-
cise in Section 4).

3. Finer-grained traces would, of course, be good to have, but
unlikely to be available in practice.
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In addition to generation and load traces, we need two
other inputs. First, we need to know how a decision is made
to either inject power into or withdraw power from the stor-
age system. This operating policy can be quite complex, and
is the subject of much research [3], [9], [12], [24]. Neverthe-
less, simple rules such as ‘store excess solar energy’ and
‘discharge the store when solar generation is less than the
load’ are often adequate for most situations. We assume
that, for the case of simulation and stochastic network calcu-
lus approaches, such an operating policy is provided to the
sizing decision-maker. Second, it is necessary to model the
behaviour of a storage system in response to power injection
and discharge. We use a recently-proposed storage model in
our work [25].

To summarize, we assume that the sizing decision-maker
has access to the following inputs:

� A representative set of solar traces S ¼ fSig (for now,
think of them as one trace per-year, but we discuss
this point in more detail in Section 4.3).

� A representative set of load tracesD ¼ fDjg that con-
stitute a set of load scenarios. Each load trace needs to
be of the same time duration as the solar traces.

� An operating policy: for the simulation and stochastic
network calculus approaches, the set of rules that
determine when the store is charged or discharged.

� A storage model, along with all associated model
parameters: given the current state of charge, and
the applied power, this is a set of equations that com-
putes the new state of charge.

3.2 Sizing Objective

Given the inputs in Section 3.1, our objective is to compute
the “best” sizing for solar PV panels and the storage capac-
ity. What constitutes the best choice will depend on the situ-
ation at hand. Several quality metrics are plausible:4

� Minimize LOLP: This is the probability that the sys-
tem is unable to meet the load from solar generation.
This probability can be numerically estimated as the
ratio of the time period during which the load is
unmet from solar generation to the total time period
under consideration.

� Minimize expected unserved energy (EUE): This is the
total amount of load (energy) that cannot be deliv-
ered from solar generation during the period under
consideration. If this load is not met from the grid,
there will be user discomfort.

� Minimize financial cost: This is the dollar cost of pur-
chasing the solar panel and storage system, as well
as the cost of purchasing, as necessary, electricity
from the grid, at its currently prevailing price. It can
be viewed either as a one-time capital cost added to
a periodical operational expense, due to potential
purchases from the grid and the eventual degrada-
tion of the equipment from wear and tear. Note that
if we can associate a cost to meeting unmet load
from the grid or a diesel generator, then the cost-

minimization objective incorporates the objective of
minimizing unmet load.

� Maximize robustness: This is the degree of sensitivity
of the sizing to perturbations in the input. Intuitively
speaking, we wish to pick an approach such that
small perturbations in the inputs result in only a
small perturbation in the sizing [26]. We discuss this
point in greater detail in Section 4.

� Minimize computation time: We expect that the sizing
decision will be made on behalf of a system purchaser
by a sizing decision maker. The computation cost of
each such decision, therefore, should not be onerous.

In many cases, there will be a trade-off between cost on
the one hand, and LOLP/EUE and robustness on the other.
Moreover, robustness and computation cost go hand-in-
hand, since to get robust results we (generally) have to pro-
cess more data and hence perform more computation. In
this work, for concreteness, we focus on minimizing the
cost of solar PV and storage, subject to meeting a certain
LOLP or EUE constraint.

Traditionally, the LOLP/EUE target is specified together
with a length of time over which this criteria should be met
[27]. For example, a common loss-of-load target for reliable
grid-scale electrical systems is one day over a period of 10
years, corresponding to an LOLP target of 0.000274. Such a
high level of reliability makes sense when frequent or pro-
longed loss-of-load events correspond to millions of dollars
in losses to the economy supported by the electrical system.
Achieving this level of reliability equates to sizing for the
worst-case behaviour with virtually 100 percent confidence,
requiring expensive systems that are oversized for the aver-
age behaviour but are nevertheless cheaper than the cost of
loss-of-load events.

In contrast, smaller microgrids such as a house can tolerate
higher LOLP due to smaller penalties associated with loss-of-
load events, the ability to easily shut off electrical appliances
at times of high loadwith negligible costs, and the availability
of the grid and perhaps a diesel generator to offset some of
these events. For the same reasons, sizing the system for the
worst case would be a sub-optimal financial decision. Hence,
a home-owner could desire a system that achieves target
LOLP of 5 percent over all 90-day periods, with a confidence
of 95 percent. Mathematically, this corresponds to a system
which gives PðLOLP � 0:05Þ � 0:95 over any 90-day period.
We will refer to the time interval, the LOLP/EUE target, and
the confidence as the quality of service (QoS) target.

Using other optimization objectives is also possible, and
discussed at greater length in Section 7.

4 THE IMPACT OF NON-STATIONARITY

A key insight in our work is that the traces which serve as
input to any sizing approach may neither be stationary nor
representative of the future. We discuss this next.

4.1 Traces, Trajectories, and Stochastic Processes

A solar or load trace with T entries of the form (time, value)
is a trajectory instantiated from a stochastic process, which
is defined as a set of random variables indexed by time.
That is, SiðtÞ, the tth element of the ith solar trace (resp.
DjðtÞ, the tth element of the jth load trace) is a value

4. For each application, one or multiple of these items can serve as
objectives and one or multiple others as constraints.

KAZHAMIAKA ETAL.: COMPARISON OF DIFFERENTAPPROACHES FOR SOLAR PVAND STORAGE SIZING 501

Authorized licensed use limited to: Yunnan University. Downloaded on July 28,2025 at 16:15:12 UTC from IEEE Xplore.  Restrictions apply. 



assumed by the random variable SðtÞ (resp. DðtÞ) from a
corresponding distribution. Hence, we can fully character-
ize the historical solar (resp. load) stochastic process by
defining joint distribution of a set of T random variables,
one for each time step. Assuming independence of each
time step, we can decouple these distributions, allowing us
to use the set S (resp. D) of solar generation (resp. load)
traces to estimate parameters for each of the T distributions.
For example, the numerical mean of the tth time step of the
set of traces can be viewed as an estimate of the mean of the
tth distribution and the sample variance of this set is an esti-
mate of its variance. Thus, with sufficient data, we can use
standard statistical techniques to find the best-fitting distri-
butions that characterize a set of traces.

Given this characterization of historical stochastic pro-
cesses, what can we say about the future? Suppose that the
generation and load stochastic processes were time-invariant.
Then, once the historical processes are characterized, the
future is also ‘known’ in that we can generate potential future
trajectories by generating a random value per time step from
the corresponding distribution. We can then choose a sizing
that meets our sizing objectives not just for historical trajecto-
ries, but also for potential future trajectories.

However, this naive approach has three problems. First,
even assuming independence of time steps, it is onerous to
define T separate distributions, since T can be very large,
on the order of 10,000–100,000 values. Second, there is no
guarantee that a stochastic process parametrized based on
historical traces will adequately represent the future. Third,
we do not have any guidelines on how much data is
‘enough.’ To solve these problems, we need to take a closer
look at the generation and load stochastic processes.

4.2 Causes of Non-Stationarity

A key observation is that both the solar and load stochastic
processes are non-stationary5 due to three effects:

1) Diurnality. For example, the distribution of the r.v.
SðtÞ corresponding to a time slot t at night will differ
from the distribution of an r.v. corresponding to a
time slot at mid-day.

2) Seasonality. For example, the distribution of the r.v.
SðtÞ corresponding to a time slot t at mid-day in win-
ter will differ from the distribution of an r.v. corre-
sponding to a time slot at mid-day in summer.

3) Long-term trends. For example, the distribution of the
r.v.’s DðtÞ and SðtÞ corresponding to a time slot t at
the start of a trace may differ from their distribution
for a time slot later in the trace.

4) Autoregressivity. For example, the distributions of the
r.v.’s SðtÞ and DðtÞ are dependent on the values
taken by the respective r.v.’s Sðt� 1Þ andDðt� 1Þ.

Non-stationarity should be taken into account upon char-
acterizing historical generation and load stochastic processes.

4.3 Stochastic Process Parametrization

Recall that the parameters of the stochastic process, i.e., corre-
sponding to each of the T distributions constituting the

process, are derived from solar and load traces. Given that the
process has both diurnal and seasonal non-stationarity effects,
the solar and load tracesmust be both detailed enough and long
enough to capture all three effects.More precisely:

� The traces should have sufficient temporal resolution
to capture diurnal changes. That is, the time step
should be sufficiently small to have an adequate
number of values for each part of the day.

� The traces should be long enough to capture season-
ality, i.e., at least one year in duration, if not longer.

� The traces should be long enough to capture any
long-term trends in load (we assume that solar gen-
eration is stationary at the time scale of a year).

� There should be enough traces in the set of traces so
that there are sufficient samples to adequately esti-
mate the parameters of each distribution.

Ideally, we would have access to per-minute load and
generation traces spanning several decades. Then, setting
T ¼ 60� 24� 365 ¼ 525; 600, i.e., per minute of the year,
we would obtain multiple sample values for each time step,
allowing us to estimate, with adequate confidence, the
parameters of each of the T solar generation distributions,
and potentially long-term trends in the load (for example by
fitting a linear regression to the residual after accounting for
diurnal and seasonal effects).

In practice, it is unlikely that such data traces are available.
Load and solar generation are oftenmeasured at a time scale of
30 minutes or longer, and it is rare to have more than a year or
two of data. Therefore, we resort to the following pragmatic
approach that, in our experience,works reasonablywell: create
a set of sub-samples from data traces that spans multiple sea-
sons.More precisely, given a dataset in the formof a time series
that is at least one year long and starts and ends on the same
day, we join the ends of the data to create a circular time series.
We then sample blocks ofX days, whereX is the time interval
in the QoS target, from the time series by choosing random
start times.We call each of the n samples a ‘scenario’, and treat
their ensemble as an estimate of expected future scenarios.

We now discuss three robust sizing approaches that base
their sizing decisions on these ‘traces of the future.’ We
defer a discussion on how to evaluate the robustness of
these approaches to Section 6.

5 ROBUST SIZING APPROACHES

The sizing decision, that is, choosing the size of the store B
(in kW/kWh) and of the solar panels C (in kW) to meet one
or more of the objectives discussed in Section 3.2, can be
made using many different approaches. In this section, we
present three representative approaches.

We make the following assumptions:

� For simplicity, and for reasons of space, we assume
that the goal is to find the minimum-cost storage and
solar PV sizes that meet a certain LOLP or EUE QoS
criterion over a given time duration ofX days.

� We assume that we have available a solar generation
trace S and load trace D corresponding to the same
time interval and with a length of at least one year.
As already discussed, from these traces we can

5. Roughly speaking, this means that statistics computed from two
different random sub-samples of the traces can differ.
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obtain n scenario samples of X days of solar genera-
tion and the corresponding load.

� We only size the storage system for energy, not for
power, since sizing for power is typically trivial (the
power rating of the storage system must exceed the
sum of power draws of the set of simultaneously
active load components).

� We assume the storage system energy capacity can
only take one of b different values and that the solar
panel size can only take on one of c different values.
Hence, sizing a system is essentially conducting a grid
search through bc pairs of solar PV panel sizes and
storage capacity sizes anddetermining the optimal siz-
ing, i.e., the sizing with the minimum cost which has
some guarantee of satisfying the target LOLP/EUE.

� We assume that if a certain combination of storage
and PV values results in a certain LOLP/EUE, then
larger values of either storage or PV will always
result in lower values of LOLP/EUE. This allows us
to use a greedy grid search heuristic.

We denote the number of time steps in the load and solar
generation traces by T . pB is the price for one unit of battery
(i.e., 1 cell), and pC is the price for one unit of PV panel. We
normalize the solar generation Si trace, so that it represents
the generation from a single PV panel unit. Finally, the
LOLP target is denoted �, and the EUE target, expressed as
a fraction of the total load, is denoted u.

5.1 Optimization

In this approach, we formulate an optimization program for
solar panel and battery sizingwith the objective ofminimizing
the capital cost of the system, subject to physical system and
LOLP/EUE constraints. We do not specify the operating pol-
icy, leaving this decision to the optimization solver. This
allows us to compute the best possible sizing in the case of
optimal operation. In this sense, although the sizing decision
made by the optimization program is a potentially-unattain-
able lower bound, it measures the level of sub-optimality in
the operating policy used in the two other approaches.

Our approach has two phases. In the first phase, for each
scenario and for each of the b potential battery sizes, we
compute the optimal solar panel size C, assuming optimal
operation. This gives us n sizing curves defined by the inter-
polation of b sizings that were computed for each scenario
(see Fig. 2). In the second phase, we use a technique based
on the Sample Univariate Chebyshev bound [28] to com-
pute a robust sizing that is insensitive to the details of indi-
vidual traces. We discuss each phase in turn.

5.1.1 Phase 1

For phase 1, define Pc to be the charging power, Pd to be the
discharging power, Pdir to be the power that flows directly
from PV panels to load, and E to be the energy content. The

size of the battery is B and the generation capacity of the
panels is C. Fig. 1 shows a labelled system diagram.

The battery model used here is Model 1* from [25] with the
followingparameters: hc (resp. hd) the charging (resp. discharg-
ing) efficiency, ac (resp. ad) the charging (resp. discharging)
rate limit, u1, v1, u2, v2 used to characterize the power-depen-
dent lower and upper limits on the energy content (see con-
straint (6)). The energy content at the end of time slot t is
denotedEðtÞ, and the initial energy content isU . Recall that the
data trace for solar generation S is for one unit of PV panel and
thatD denote the household electricity load. The duration of a
time-step isTu and the number of time-steps in a data trace isT .

We will first present the full formulation with an LOLP
constraint, and then show how it can be modified to work
with a EUE constraint. Given a scenario (SðtÞ), (DðtÞ), and
storage parameters B, hc, hd, ac, ad, u1, v1, u2, v2, U , and trace
parameters Tu and T , the problem can be formulated as

min
C;Pc;Pd;
Pdir;I;g;E

C (1)

subject to

PcðtÞ þ PdirðtÞ � SðtÞC 8t (2)

PdirðtÞ þ PdðtÞ ¼ DðtÞ � dðtÞ (3)

Eð0Þ ¼ U (4)

EðtÞ ¼ Eðt� 1Þ þ PcðtÞhcTu � PdðtÞhdTu 8t (5)

u1PdðtÞ þ v1B � EðtÞ � u2PcðtÞ þ v2B 8t (6)

0 � PcðtÞ � Bac 8t (7)

0 � PdðtÞ � Bad 8t (8)

IðtÞ 2 f0; 1g 8t (9)

B;C; PdirðtÞ; dðtÞ; EðtÞ � 0 8t (10)

1=T
XT
t¼1

IðtÞ � � (11)

IðtÞ � dðtÞZ 8t (12)

dðtÞ � IðtÞDðtÞ 8t (13)

PcðtÞPdðtÞ ¼ 0 8t; (14)

Fig. 2. Fifty sizing curves as well as their sample and analytical Cheby-
shev curves for g ¼ 0:95.

Fig. 1. System diagram.
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where constraint 2 states that the sum of what goes into the
battery and directly towards the load is bounded by the
solar generation, dðtÞ is the load that is not met from solar
generation at time t (it is always � DðtÞ), constraints (5), (6),
(7), and (8)) represent the battery model, and IðtÞ is an
binary variable used to indicate if the load is met or not in
time-step t (IðtÞ ¼ 1 means the load is not met). Con-
straint (12) ensures that IðtÞ is zero if dðtÞ ¼ 0 (Z is a large
positive constant), constraint (13) ensures that IðtÞ is one if
dðtÞ > 0 and constraint (11) is the LOLP constraint. Con-
straint (14) forbids simultaneous charging and discharging
and it was shown in [9] that it can be ignored which makes
the problem an Integer Linear Program (ILP). Note that in
this problem B and C are real numbers, i.e., they are not
limited to the pre-defined values used for the other two
approaches.

To express an EUE constraint, this problem formulation
can be modified as follows. Replace Constraints (11), (12),
and (13) with

XT
t¼1

dðtÞ � u
XT
t¼1

DðtÞ: (15)

Note that the formulation with the EUE constraint is a Lin-
ear Program (LP), which can be solved much more effi-
ciently than an ILP.

We use this mathematical program to compute the small-
est6 C for each of the b battery sizes so that the system meets
the QoS target; these points define a curve in a (B;C) space.
We denote each curve as Ki corresponding to the ith sce-
nario, for a total of n curves.

5.1.2 Phase 2

In phase 2, we use the n sizing curves obtained in phase 1 to
compute a probability bound on the system size with a
given measure of confidence.

First, for each of the b values of B0, we construct the set
LB0 consisting of points in the (B;C) space along the inter-
section of the line at B ¼ B0 and each curveKi.

LB0 ¼ fC00 : C00 ¼ KiðB0Þg: (16)

Each set of points can be viewed as samples from a distri-
bution defined by the sizing curves. Denote the size of the
set jLB0 j ¼ NB0 . Not all sizing curves have a value defined at
B0, so NB0 � n. We can compute a sample Chebyshev
bound, as formulated in [29], on the C values as follows:

P
�jC � mC;NB0 j � �sC;NB0

�
� min

 
1;

1

NB0 þ 1

$
ðNB0 þ 1ÞðN2

B0 � 1þNB0�2Þ
N2

B0�2

%!
:

(17)

The inequality above is a bound on the probability that
the difference between some future value of C for the corre-
sponding B0 from the estimated mean mC;NB0 exceeds a fac-
tor � of the estimated standard deviation sC;NB0 . To use this

inequality to compute a sizing, we first find the smallest �
that satisfies our confidence measure g

min
�

 
1

NB0 þ 1

$
ðNB0 þ 1ÞðN2

B0 � 1þNB0�2Þ
N2

B0�2

%!
� 1� g:

(18)

Next, we rearrange the inequality in the LHS of Eq. (17) to
obtain a robust value C�

B0 using the � that satisfies Eq. (18)

C�
B0 ¼ mC;NB0 þ �sC;NB0 : (19)

The resulting set of points ðB0; C�
B0 ) can be interpolated to

define a curve which we call the Chebyshev curve on C, since
each point on the curve is a Chebyshev bound on C values.
Similarly, we can construct a Chebyshev curve on B by com-
puting Chebyshev bounds on the following sets for each of
the c values of C’

LC0 fB00 : ZiðB00Þ ¼ C0g: (20)

The upper envelope of these Chebyshev curves repre-
sents system sizings which are robust with respect to both B
and C with confidence measure g. We use the least-cost sys-
tem along the upper envelope as the robust sizing.

If we are confident that the estimated mean and standard
deviation have converged to the population mean after n
samples, we can obtain a tighter bound characterized by a
value of � that satisfies the following:

ð1� �Þ�1 ¼ 1� g: (21)

Using Eq. (21) in place of Eq. (18) corresponds to the clas-
sical analytical Chebyshev bound which assumes that the
population mean and standard deviation are known.

5.1.3 Computation Cost

The two Chebyshev curves can be computed withOðbnþ cnÞ
computations, hence the computation time of this approach is
dominated by the computation of the sizing curves via the
optimization program. The inputs to the optimization pro-
gramare the solar and load traces, each of sizeOðT Þ, for a total
size of OðT Þ. Asymptotically, this is also the number of varia-
bles in the program. Denoting by Q ¼ OðT Þ the number of
variables and L ¼ OðT Þ as the number of bits of input to the
algorithm, even for an LP, which is far more computationally
efficient than an ILP, the best-known approach, the interior-
point method, requires a runtime of OðQ3:5L2 � logL�
loglogLÞ 	 OðT 5:5 � logT Þ [30]. Since we need nb such runs,
and our problem is integer, the total complexity is lower
bounded byOðnbT 5:5 � logT Þ.

5.2 Simulation

In this approach, we run system simulations to construct the
sizing curves for each of the n scenarios. Specifically, for
each scenario, for each potential sizing choice, and for each
time step t 2 ½1; T 
, we determine the availability of solar
power SðtÞ and the load DðtÞ. Depending on these values,
the storage and PV sizes under test, and the given operating
policy, we use the storage model to either charge or dis-
charge the store, updating its SoC as in Eq. (5). If we find

6. The solution gives us the optimal C as a real number, which we
round up to the nearest potential C value among the c possibilities.
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that there is a need to discharge the store, but its SoC is zero,
then we mark that the load is unmet from solar generation
for this time step. At the end of each simulation, we empiri-
cally compute the LOLP � or EUE u for this sizing.

We use a search algorithm that, given a scenario, effi-
ciently searches the (B;C) space to compute the sizing
curve:

Step 1: For C ¼ Cmax, start at B ¼ Bmin and increment B to
find the smallest value of B such that the system
satisfies the target performance requirement, and
store (B;C).

Step 2: Decrement C, then start from the most recent value
of B and increment it until the system satisfies the
performance requirement, and store (B;C).

Step 3: Repeat previous step through C ¼ Cmin. Stored
(B;C) pairs give us the sizing curve.

This algorithmfirst finds the edge of the curve atC ¼ Cmax,
then traces the rest of the curve using at most bþ c simula-
tions. We then use phase 2 as described in Section 5.1.2 to pro-
cess these curves and compute a robust sizing from the upper
envelope of the twoChebyshev curves.

Note that the computation cost of this approach is
OðnT ðbþ cÞÞ, since each time step takes Oð1Þ computation
time, there areT steps per simulation, and ðbþ cÞn simulations.

5.3 Stochastic Network Calculus (SNC)

Unlike the mathematical programming and simulation
approaches, which can compute either LOLP or EUE metrics
with minor changes, stochastic network calculus has signifi-
cant differences in themathematical formulation used to com-
pute the sizing for each metric. Given a sizing, a QoS target
and a set of scenarios, the SNC approach computes a loss
bound on each scenario. We consider a sizing to be valid if the
percentage of scenarios that meet the LOLP or EUE target
meets the confidence target. The algorithm used to efficiently
search the (B;C) space for robust sizings is the same as the
one used to compute sizing curves as described in Section 5.2.

The formulation is complex, so for each metric we follow
the full formulation with a summary of the algorithm for
computing the loss bound on each scenario.

5.3.1 SNC for LOLP

In this approach, we characterize the net power arrival to
the battery using lower and upper bounds computed on the
ensemble of input traces. Then, we use stochastic network
calculus to compute the LOLP for each choice of storage
and solar panel size ðB;CÞ. The output is a statistical charac-
terization of the LOLP � as a function of the selected choices
of (B;C). We then use the greedy heuristic discussed in Sec-
tion 5.2 to compute the least-cost sizing that meets the
LOLP criterion. Since SNC sizing is known to be robust to
small perturbations in the input traces, we view this least-
cost sizing as being robust to the input traces.

Denote by PcðtÞ and PdðtÞ, respectively, the charging and
discharging power from and to the battery, given by an
operating policy corresponding to

PcðtÞ ¼ min ½SðtÞC �DðtÞ
þ;acB
� �

(22)

PdðtÞ ¼ min ½DðtÞ � SðtÞC
þ;adB
� �

: (23)

That is, we assume that the operating policy is as follows:
the battery is charged whenever the generation SðtÞ exceeds
the load, and discharged otherwise, with a bound Bac on
the charge power and a bound Bad on the discharge power
(matching Eqs. (7), (8)). Different operating strategies will
require these equations to be modified appropriately.

Define the net power inflow to the battery at any time as
the overall net equivalent power injected to the battery,
which is

PnetðtÞ ¼ hcPcðtÞ � hdPdðtÞ: (24)

Note that at any time instant t, PcðtÞ � PdðtÞ ¼ 0, and PnetðtÞ
can be expressed as

PnetðtÞ ¼ hcPcðtÞ if SðtÞC � DðtÞ
�hdPdðtÞ if SðtÞC < DðtÞ

�
: (25)

Please also note that while PcðtÞ; PdðtÞ � 0 at any time t,
PnetðtÞ can be both positive and negative, and represents the
rate at which the buffer changes over time.

According to the battery model in Reference [25], the
instantaneous available battery capacity is a function of
charge/discharge power to/from the battery. The larger the
charge/discharge power the lower the instantaneous avail-
able battery capacity. This means that apart from the power
constraints discussed above, we also have energy constraints
in battery operations. To be more precise, the battery state of
charge EðtÞ at any time t must satisfy B1ðtÞ � EðtÞ � B2ðtÞ,
where

B1ðtÞ ¼ u1PdðtÞ þ v1B (26)

B2ðtÞ ¼ u2PcðtÞ þ v2B: (27)

With the above notation, the state of charge of a battery EðtÞ
at any time t can be, recursively, expressed by

EðtÞ ¼ ½Eðt� 1Þ þ PnetðtÞTu
B2ðtÞ
B1ðtÞ; (28)

where ½�
B2ðtÞ
B1ðtÞ truncates the inner expression to a lower

bound B1ðtÞ and an upper bound B2ðtÞ, or equivalently for
any y

½y
B2ðtÞ
B1ðtÞ ¼

B1ðtÞ if y < B1ðtÞ
B2ðtÞ if y > B2ðtÞ
y otherwise

8<
: : (29)

Recall that LOLP is the probability that at time t the
energy to be withdrawn from the battery reaches the lower
battery capacity boundary (i.e., B1ðtÞ) and hence the
demand cannot be met at that time. Mathematically speak-
ing, this means that

LOLP ¼ PfEðt� 1Þ þ PnetðtÞTu < B1ðtÞg 8t; (30)

where Eðt� 1Þ can be computed recursively according to
Eq. (28). Please note that Eq. (30) is equivalent to Eq. (11) by
setting LOLP � �, both of them enforcing LOLP constraint
in the steady-state regime. In the steady-state, all time
instants t within T have probabilistically identical weights
in violating LOLP restriction. This is attained by averaging
over all time instants within T with equal weights in
Eq. (11) and by formulating the terms in the probability
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expression in Eq. (30) in a way to represent and model any
time instant in T .

The recursive equation in Eq. (30) can be turned into a
complicated min-max non-recursive equation. At any time t,
the min-operand searches, in the range of ½0; t� 1
, for the
last reset time before t, which is the last occurrence of a loss
of load event. As shown in Reference [15], instead of apply-
ing the min-operand to t scenarios in ½0; t� 1
, we can highly
accurately approximate LOLP by only accounting for only
two scenarios: (I) the reset time occurs at the last time slot
t� 1 and (II) there has been no reset time since t ¼ 0.

Hence, define LOLP I and LOLP II representing LOLP,
respectively under the two scenarios mentioned above and
LOLP can be approximated by

LOLP 	 min LOLP I; LOLP II
� �

: (31)

Under scenario I, the last reset time always happens at
the previous time slot. The LOLP under this scenario can be
closely approximated by a battery-less scenario. This means
that LOLP I can be approximated by the likelihood that the
instantaneous demand is larger than the instantaneous sup-
ply, or mathematically speaking

LOLP I 	 PfDðtÞ > SðtÞCg: (32)

Under scenario II, there is no reset time until time t. This
means that the battery state of charge has never reached its
lower boundary. Assuming that the battery is initially full
(Eð0Þ ¼ n2B), LOLP II is given by

LOLP II

¼ P EðtÞ < B1ðtÞf g 8t (33)

¼ P v2B� sup
0�s�t

ð�Pnetðs; tÞÞTu < B1ðtÞ
� �

8t (34)

¼ P sup
0�s�t

u1PdðtÞ
Tu

� Pnetðs; tÞ
� 	

>
v2 � v1
Tu

B

� �
8t; (35)

where Pnetðs; tÞ is defined as

Pnetðs; tÞ :¼
Xt
k¼sþ1

PnetðkÞ: (36)

We model the tail-bound in Eq. (35) with an exponential dis-
tribution. This means that we compute pIIl ; �

II
l � 0 such that

for any d � 0, the following condition holds:

P sup
0�s�t

u1PdðtÞ
Tu

� Pnetðs; tÞ
� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼Y t

> d

0
BBB@

1
CCCA 	 pIIl e

��II
l
d; (37)

where Y t is defined to simplify notation for the rest of deri-
vations. Combining Eq. (35) with Eq. (37), we have

LOLP II ¼ P Y t >
v2 � v1
Tu

B

� �
	 pIIl e

��II
l
ðv2�v1

Tu
BÞ; (38)

and finally LOLP can be computed, by inserting Eqs. (32)
and (38) into Eq. (31). There are three unknowns in Eq. (31)

to be evaluated: LOLP I, pIIl , and �II
l that can be computed as

discussed next.
We can translate this mathematical presentation into an

algorithm: given n scenarios, we compute n different sam-
ple paths of the stochastic processes Pi

d and Pi
net for a time

horizon of length T . We can compute LOLP, using stochas-
tic network calculus, following these steps in turn:

Step 1: Compute LOLP I for i ¼ ½1; n
: This is a point-wise
probability, expressed in Eq. (32) and can be computed as

LOLPi;I ¼
PT

t¼0 I DiðtÞ > SiðtÞCð Þ
T

; (39)

where IðxÞ is the indicator function, which is 1 if x is true
and 0, otherwise.

Step 2: Construct Y i;t: To compute pIIl and �II
l , we first con-

struct the set of all Y i;t for any ensemble trace i 2 ½1; n
 and
any time t � T , defined as

Y i;t ¼ sup
0�s�t

u1P
i
dðtÞ

Tu
� Pi

netðs; tÞ
� 	

: (40)

It can be shown that Y i;t can be expressed, recursively, by

Y i;1 ¼ u1
Tu

P i
dð1Þ � Pi

netð1Þ (41)

Y i;t ¼ u1

Tu
P i
dðtÞ � Pi

netðtÞ

þmax Y i;t�1 � u1

Tu
Pi
dðt� 1Þ; 0

� 	
:

(42)

Step 3: Compute pi;IIl and �i;II
l for i ¼ ½1; n
: Using Y i;t from the

previous step, pi;IIl is the likelihood of Y i;t, being positive, or

pi;IIl ¼
PT

t¼1 I Y i;t > 0ð Þ
T

; (43)

and �i;II
l can be obtained as the exponent of fitting an expo-

nential distribution to the following set

�i;II
l � Exponential Y i;t jY i;t > 0

� �� �
: (44)

Step 4: Compute LOLP: Compute LOLPi;II, according to
Eq. (38). Then LOLP ¼ minðLOLPi;I; LOLPi;IIÞ. The sizing
is valid if the following condition holds:Pn

i¼1 IðLOLPi � �Þ
n

� g; (45)

where g is the confidence parameter.

5.3.2 SNC for EUE

In this section, we first formulate the value of unserved
energy (UE) at any time instant t. The UE at any time t is
given by

UEðtÞ ¼ ½Eðt� 1Þ þ PnetðtÞTu �B1ðtÞ
þ: (46)

Moreover, define the probability of unserved energy (PUE) as
the complement cumulative distribution function (CCDF) of
the unmet load,which is

PUEðyÞ ¼ P½UEðtÞ > y
: (47)
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The expected value of the unserved energy (EUE) can be
expressed as a function of the unmet load probability
(PUE), as follows

EUE ¼
Z 1

0

PUEðyÞdy: (48)

We use a similar strategy as used for LOLP formulation, to
compute PUE. To be more precise, we consider two scenar-
ios: (I) the reset time being the last time slot t� 1 and (II)
there has been no reset time since the beginning. Let us
define PUEI and PUEII, representing the unmet load proba-
bility, respectively under Scenarios I and II. We approxi-
mate PUE with the minimum of what we observe in
scenarios I and II; i.e.,

PUEðyÞ 	 min PUEIðyÞ; PUEIIðyÞ� �
: (49)

Under scenario I

PUEIðyÞ ¼ P DðtÞ � SðtÞC � y > 0f g 	 pIue
��Iuy; (50)

where we assume that the tail bound of DðtÞ � SðtÞ can be
well approximated by an exponential distribution to obtain
the right-hand-side in Eq. (50).

Under scenario II

PUEIIðyÞ ¼ P Eðt� 1Þ þ PnetðtÞTu �B1ðtÞ � y > 0f g (51)

¼ P sup
0�s�t

u1PdðtÞ
Tu

� Pnetðs; tÞ
� 	

>
ðn2 � n1ÞBþ y

Tu

� �
(52)

	 pIIl e
��II

l
ðn2�n1ÞBþy

Tu

� �
(53)

¼ pIIu e
��IIu y; (54)

where

pIIu ¼ pIIl e
��II

l
ðn2�n1ÞB
Tu ;�II

u ¼ �II
l

Tu
: (55)

Inserting Eqs. (50) and (54) in Eq. (49), we have

PUEðyÞ 	 pIue
��Iuy; pIIu e

��IIu y
� �

: (56)

Inserting Eqs. (56) to (48), yields

EUE ¼

pIIu
�IIu

� pIIu
�IIu

pIIu
pIu

� � �IIu
�Iu��IIuþ pIu

�Iu

pIIu
pIu

� � �Iu
�Iu��IIu if pI;IIu ; �I;II

u > 0

pIu
�Iu

� pIu
�Iu

pIu
pIIu

� � �Iu
�IIu��Iuþ pIIu

�IIu

pIu
pIIu

� � �IIu
�IIu��3 if pI;IIu ; �I;II

u < 0

pIIu
�IIu

if pI;IIu > 0; �I;II
u < 0

pIu
�Iu

if pI;IIu < 0; �I;II
u > 0

8>>>>>>>>>>><
>>>>>>>>>>>:

;

(57)

where pI;IIu ¼ pIu � pIIu and �I;II
u ¼ �I

u � �II
u . Finally, for the

given tolerable unmet demand ratio u, we must ensure that

EUE

E½DðtÞ
 � u 8t: (58)

We translate this mathematical presentation into an algo-
rithm: given n scenarios, we compute n different sample
paths of the stochastic processes Pi

d and Pi
net for a time hori-

zon of length T . We can compute the EUE bound using sto-
chastic network calculus by following these steps in turn:

Step 1: Compute pIu and �I
u: We first construct the set of all

Zi;t for all sample paths i and all time t � T as

Zi;t ¼ DiðtÞ � SiðtÞC: (59)

Then, pi;Iu is given by

pi;Iu ¼
PT

t¼0 I Zi;t > 0ð Þ
T

; (60)

and �i;I
u can be obtained as the exponent of fitting an expo-

nential distribution to the following set

�i;I
u � Exponential Zi;t jZi;t > 0

� �� �
: (61)

Step 2: Compute pi;IIu and �i;II
u : To do so, we should first com-

pute pi;II and �i;II according to Step 3 in LOLP computation
algorithm. Inserting these values in Eq. (55) yields the corre-
sponding pi;IIu and �i;II

u .
Step 3: Compute the EUE Restriction: By inserting the val-

ues obtained in previous steps in Eqs. (57) and (58). The siz-
ing is valid if the percentage of scenarios whose loss bound
is under u satisfies the confidence measure g.

5.3.3 Computational Complexity

For both LOLP and EUE formulations, each test requiresOðT Þ
time to construct the set Y and calculate the parameters of
LOLPI and LOLPII for each of the n scenarios. This needs to
be repeated over every tested combination of (B;C), of which
there are at most (bþ c) by using the search algorithm in Sec-
tion 5.2. Hence the total complexity isOðnT ðbþ cÞÞ.

6 NUMERICAL EVALUATION

For concreteness, we numerically evaluate our approaches
using four years of PV generation and load data collected
from a number of homes in the Pecan Street Dataport [31].
We present a detailed view of results for three homes in the
dataset, representing homes with low, mid, and high levels
of consumption. We also present the results of an aggre-
gated sizing evaluation across 52 homes from this dataset.

To evaluate the cost of a particular sizing, we set pC , the
installed cost of solar panels, to be USD 2.50/W and pB, the
cost of storage, to be USD 460/kWh,7 with battery parame-
ters corresponding to a Lithium-Nickel-Manganese-Cobalt
battery chemistry [32], [33] as summarized in Table 1. The
battery model is Model 1* in Reference [25] and we use the

TABLE 1
Battery Model Parameters

Parameter ac ad u1 u2 v1 v2 hc hd

Value 1 1 0.053 �0.125 0 1 0.99 1.11�

� includes inverter inefficiencies of � 10%

7. Source: https://www.tesla.com/powerwall
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simple operating policy of charging the battery when solar
generation exceeds the load, and discharging the battery
when load exceeds solar generation. The battery starts with a
full state of charge.

Although our approach to optimization-based sizing is
robust, in that it is insensitive to small perturbations in the
input trace, it is often not possible to use optimization-based
sizing in real life, because it relies on optimal operation of
the storage system, using a policy that cannot be deter-
mined in advance. Thus, we only evaluate our Chebyshev-
curve sizing approach using sizings curves computed via
simulation, and compare this sizing to the SNC approaches.

6.1 Convergence

In accordance with the simulation and optimization
approaches, the recommended system size is based on a sta-
tisticalmeasure of the underlying samples of computed sizing
curves. With SNC, we compute a probabilistic upper-bound
on the number of loss-of-load events for each scenario in the
ensemble. With all three approaches, the recommended size
is progressively refined asmore scenarios are evaluated.

We find that in all three approaches, B and C values con-
verge after about 100 randomly sampled scenarios for � or u
targets of 0.05. For smaller targets, more scenarios are
required for convergence.

6.2 Sizing

Fig. 3 shows sizings from SNC and simulation approaches
for � ¼ 0:05 and u ¼ 0:05, over 100-day periods with a confi-
dence of 95 and 97 percent. The figures include the sizing
curves and the Chebyshev curves computed from them.
The sizing obtained for all approaches with 95 percent confi-
dence lie above the sizing curves. Using 97 percent confi-
dence gives a more conservative sizing, which is more
robust to variations in scenarios that might be observed in
the future and are not fully captured in the historical data.

We note that sizing obtained using the optimization
approach (not included in Fig. 3) is identical to the sizing
obtained using simulations for an EUE target, but is always
much smaller than with the other two approaches for an
LOLP target. This is not surprising, given that the optimiza-
tion approach chooses the optimal operating strategy, rather
than the basic strategy used by the other approaches; the
basic strategy happens to be optimal for minimizing EUE.

6.3 Robustness

We compare robustness of the sizing that results from the
different sizing approaches in Fig. 4, which summarizes the
results of leave-one-year-out analysis for a sample low,
mid, and high electricity consumption home in the dataset.
For each of the 4 years in the dataset, we compute a sizing
by randomly sampling 100-day scenarios from the other
3 years. We then use the simulation and SNC approaches to
compute a robust system size using either 95 or 97 percent
confidence bounds for � ¼ 0:05 (Figs. 4a, 4b) or u ¼ 0:05
(Figs. 4c, 4d). Each size is then tested on scenarios from the
test year, and the distribution of resulting LOLP and EUE
values for each scenario is presented as a histogram.

Note also that each of the four subsets of three years of data
can result in a substantially different sizing. If a year with

particularly high load is left out, such as the 3rd year in the
high-consumption household, the sizing results in a violation
of the QoS, indicating that solar generation and load may
highly variable across years. This variability can be accounted
for by sizing conservatively, which can be achieved by using a
higher confidence bound. Specifically, note that with g = 0.95,
there are several instances where both simulation- and SNC-
based sizings fail to meet the performance bound. This is
because of atypical behaviour in one of the year compared to
the other years.When g is increased to 0.97, the number of vio-
lations decreases for both approaches. Compared to the SNC
approach, the simulation approach is more sensitive to
increases in g, since the Chebyshev curves give very loose
bounds at high confidence, while the SNC approach uses an
empirical confidence measure. In practice, we expect g to be a
user-supplied parameter that reflects their level of optimism.

The aggregated results for 52 Austin, Texas houses with
data through years 2014-2017 are shown in Fig. 5. For each
house, we compute a leave-one-year-out sizing for an LOLP
or EUE target of 0.05 over a period of 100 days with 95 per-
cent confidence. We then test this size on 200 randomly
selected 100-day periods from the test year, for a total of
52� 4� 200 ¼ 41600 tests for each sizing approach. The
results are presented in histogram form. Notably, the frac-
tion of values that are within the 5 percent LOLP and EUE
target are well within g ¼ 0:95.

6.4 Computation Time

Recall that the asymptotic complexity of the optimization
approach is lower bounded by OðnbT 5:5logT Þ. The

Fig. 3. Comparing sizings at different confidences with SNC and simula-
tion approaches, for LOLP with � ¼ 0:05 (3a) and EUE with u ¼ 0:05 (3b).
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computational complexity of simulation and SNC is
OðnT ðbþ cÞÞ. Thus, for large values of T , which is typical,
the best approaches are simulation and SNC (with SNC up
to a factor of 2.5 faster than simulation).

Table 2 shows the CPU time required to process 100 sce-
narios, each of which has 365 days of data, on a 2.7 GHz
Intel Xeon CPU. It is clear that simulations and SNC take
the least time, with optimization taking five to seven orders
of magnitude more.8

7 DISCUSSION

7.1 Comparison of the Three Approaches

Our work evaluates three distinct approaches to robust and
practical sizing of solar and storage systems. Over and
above the numerical comparison in Section 6, we now make
some qualitative observations about their relative merits.

Unlike some prior work [9], [34], [35] which solve the joint
problem of optimal sizing and optimal operation, in this
work, we study only sizing. However, with optimization, the
operation rules are a free variable, in that the output of the
optimization program is also the optimal charge/discharge
schedule. Note that these operation rules cannot be used in
practice, because the rules depend in detail on the traces, and
the details of the future are unknown. If we could encode
operation rules into the optimization program, we would be

Fig. 4. The vertical histograms show the leave-one-year-out sizing performance on scenarios sampled from the test year for three households, four
years for each. The resulting LOLP or EUE of the system with size computed using the simulation-based approach is shown in the blue histograms
extending to the left, while red histograms extending to the right show comparable results with the SNC approach. Figs. 4a and 4b are for an LOLP
target of 0.05, with 95 and 97 percent confidence respectively, while Figs. 4c and 4d are for an EUE target of 0.05, with 95 and 97 percent confidence
respectively. For test years where the resulting LOLP/EUE sometimes exceeds the target, there is an annotation showing percentage of scenarios
that exceed the target.

Fig. 5. Aggregated leave-one-year-out test results on 52 houses. Percentage of tests that land within the LOLP (Fig. 5a) or EUE (Fig. 5b) target for
simulation (left) and SNC (right) sizing approaches.

TABLE 2
Computation Time (Linux User Time) Mean and Standard Error

Method
Mean CPU time per 100 scenarios (h:m:s)

LOLP EUE

m std. error m std. error

Simulation 0:0:38 < 0:0:01 0:0:38 < 0:0:01
Optimization 46453:20:05 896:6:55 277:45:21 1:01:22
SNC 0:0:24 < 0:0:01 0:0:16 < 0:018. We used CPLEX 12.6.3, which has highly parallelized LP and ILP

solvers.
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able to come up with a sizing that did not have this coupling.
Unfortunately, it is non-trivial, perhaps impossible, to encode
arbitrary operation rules in an optimization program. For
instance, consider the operation rule “Charge the store from
the grid if the battery charge is below 30 percent and the grid
price is lower than $0.12/kWh.” This rule defines a depen-
dency between the charging power and the battery charge,
which complicates the formulation of the program and also
makes it non-linear and hence difficult to solve efficiently.

There is a similar problem with stochastic network calcu-
lus, where encoding complex charge/discharge operations
rules into Equations (22) and (23) may result in greatly com-
plicating the subsequent analysis. In contrast, the simula-
tion approach can be used with any operating strategy.
Moreover, it has acceptable compute speed (though slower
than stochastic network calculus). Thus, from a qualitative
perspective, the simulation approach is perhaps the best
one, especially when combined with a post hoc Chebyshev
bound.

7.2 Contributions of Our Work

Our work makes multiple contributions. To begin with, it is
the first work, to our knowledge, that provides robust and
practical advice on sizing by comparingmultiple approaches.

Second, our use of a univariate Chebyshev curve in com-
bination with optimal sizing for multiple scenarios is inno-
vative, and can be generalized to other robust optimization
problems.

Third, the LOLP and EUE formulations using SNC in
Section 5.3 considerably advance the state-of-the-art in SNC
analysis of battery-equipped systems, such as in Referen-
ces [18], [21]. This is because the battery model used in this
work is more realistic (and more complicated). Addition-
ally, we take a different approach in characterizing energy
profiles: We model net energy demand directly, instead of
modelling supply and demand separately. We further char-
acterize the tail bounds of the net load directly instead of
defining envelopes and characterizing the residual pro-
cesses with respect to the envelopes as done in prior work.
This has substantial implications on the time complexity
and also accuracy of the model. Finally, the derivations of
EUE here are new and advancing the state-of-the-art in
SNC and also its application in energy systems.

7.3 Limitations and Future Work

Studying the impact of energy consumption and generation
patterns on the system size, especially from homes in differ-
ent geographical regions, is an interesting avenue for future
work. To facilitate this line of research, we have made the
code for computing robust system sizes with simulation
and SNC methods publicly available [7].

Our work suffers from some limitations, as discussed
next.

First, we have assumed that the load is not under our
control. In some cases, it is possible to ask the energy con-
sumers to modify their behaviour, using a control signal.
Thus, for example, a home owner may be asked to defer a
heavy load if the state of charge of the storage was particu-
larly low. In this situation, it is obvious that the system siz-
ing can be much smaller. However, sizing a system in the

presence of load control is a much more complex problem,
in that it requires jointly optimizing the storage operation as
well as the load control actions. We intend to explore this in
future work.

Second, the computation times presented in this paper
are only indicative. For example, both simulations and the
stochastic network calculus algorithm can be tuned, or re-
coded in a more efficient low-level language to improve
computation times. Similarly, it is well known that choice of
optimization meta-parameters can also significantly impact
the computation time. Nevertheless, given the substantial
differences in performance, we believe our results are repre-
sentative of expected outcomes in practical scenarios.

Finally, our approaches are scenario-based, and we treat
the length of each scenario as being specified by the user in
their QoS target. There are challenges in this setup that we
have not thoroughly explored. First, we have made an
implicit assumption that each scenario starts with a particu-
lar (full) battery state of charge. When the scenarios are
short and the QoS targets are tight, the initial charge state
may have a significant impact on the frequency of loss
events in the system; to sidestep this issue, we experimen-
tally determined that the time duration in the QoS target
must be at least 60 days for the QoS we presented in this
paper. In future work, we intend to explore how to satisfy
QoS targets with shorter time periods. Second, sampling
long scenarios from a short dataset can result in a sample
distribution that does not accurately reflect the solar and
load processes due to overfitting.

8 CONCLUSION

We evaluate and compare three state-of-the-art approaches
to size solar generation and storage in a realistic setting.
Unlike prior work, which evaluates a single approach and
does not evaluate the robustness of the resulting solution,
we compare the sizing results from these approaches on
identical inputs, permitting a fair comparison. We find that,
due to both qualitative and quantitative reasons, simulation
appears to be the best tool for sizing in a realistic setting. In
carrying out our work, we have made contributions to the
state of the art both in the area of stochastic network calcu-
lus and in the use of sample Chebyshev bounds to obtain a
novel technique for robust optimization and simulation.
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