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Abstract—Previous generations of face recognition algorithms
differ in accuracy for images of different races (race bias).
Here, we present the possible underlying factors (data-driven
and scenario modeling) and methodological considerations for
assessing race bias in algorithms. We discuss data-driven factors
(e.g., image quality, image population statistics, and algorithm
architecture), and scenario modeling factors that consider the
role of the “user” of the algorithm (e.g., threshold decisions
and demographic constraints). To illustrate how these issues
apply, we present data from four face recognition algorithms
(a previous-generation algorithm and three deep convolutional
neural networks, DCNNs) for East Asian and Caucasian faces.
First, dataset difficulty affected both overall recognition accuracy
and race bias, such that race bias increased with item difficulty.
Second, for all four algorithms, the degree of bias varied depend-
ing on the identification decision threshold. To achieve equal false
accept rates (FARs), East Asian faces required higher identifica-
tion thresholds than Caucasian faces, for all algorithms. Third,
demographic constraints on the formulation of the distributions
used in the test, impacted estimates of algorithm accuracy. We
conclude that race bias needs to be measured for individual appli-
cations and we provide a checklist for measuring this bias in face
recognition algorithms.

Index Terms—Face recognition algorithm, race bias, the other-
race effect, deep convolutional neural networks.

I. INTRODUCTION

SCIENTISTS have over 50 years of experience studying the
effects of race on human face recognition ability. People

recognize faces of their “own” race more accurately than faces
of “other” races [1]. This phenomenon is referred to as the
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“other-race effect” (ORE). The study of race bias in com-
putational algorithms, likewise, has a nearly 30-year history
that converges on the following finding. Nearly all of the face
recognition algorithms studied over the past 30 years show
some performance differences as a function of the race of
the face. As race bias is investigated in deep convolutional
neural network (DCNN) algorithms, it is important to con-
sider the lessons learned from both human- and machine-based
studies of race bias in face recognition over the last many
decades [1], [2].

First, we review the combined effects of subject and race of
face on face recognition by humans. Second, we review race
bias findings for face recognition algorithms. These findings
can guide us as we move from previous-generation (simpler)
algorithms to present-day DCNNs. These latter algorithms
require massive amounts of training data and employ large
numbers of local, non-linear computations. Third, we dis-
cuss critical, but often overlooked, considerations in measuring
face recognition bias in algorithms. Fourth, we will apply the
lessons we have learned from the past to measure performance
bias in DCNN-based face recognition systems. Specifically,
we present novel data from three DCNNs and one previous-
generation algorithm, using a dataset in which the challenge
level of the comparison items varies. This allows us to mea-
sure the effects of two races on performance, as a function of
item difficulty. This analysis is especially important for newer
DCNN algorithms, which show high accuracy for all but the
most challenging stimulus items. We will see that concerns
about race bias are magnified, as item difficultly increases. We
conclude with a checklist and discussion of considerations to
bear in mind when assessing bias in algorithms. Our goal is
to better understand how to measure and interpret race bias in
face recognition algorithms.

A. Other-Race Effect - Humans

The ORE for humans has been found across multiple
racial/ethnic groups using different methodological
paradigms [1], [3]. This effect is measured in an exper-
imental paradigm, whereby subjects of different races are
tested on their ability to recognize faces of two (or more)
races. Formally, the effect is defined by a statistical interaction
between the race of the subject and the race of the face. This
interaction shows a relative accuracy advantage for own-race
faces over other-race faces.
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Previous research has demonstrated that expertise in rec-
ognizing faces comes, in part, from meaningful experiences
with the faces across the lifespan [4], [5], beginning in
infancy [6], [7]. Indeed, race biases in face identification have
been found across different age groups [8], [9], [10]. Thus,
psychologists have concluded that the power to recognize
faces with high accuracy comes from experience discrimi-
nating among individuals from a homogeneous population of
highly similar faces (i.e., faces of one’s own race) [3], [5], [11],
[12], [13]. This experience enables the development of neu-
ral features that maximize encoding differences among faces
within the group. By this account, the ORE for humans is
due to the fact that we represent faces of our own-race with
a highly effective specialized set of features. These features
are not well suited to encode the unique character of other-
race faces. Consequently, the experience-dependent nature of
human expertise for faces is both a strength and weakness
of the human perceptual system. Experience helps us to tune
our perceptual systems to rely on features that are optimally
suited to faces of our own race, but at the cost of identification
performance for faces of other races.

Lesson 1: The fact that the ORE has been replicated across
multiple races of subjects and faces, combined with findings
that experience affects face recognition accuracy in predictable
ways, leads us to two conclusions. First, human face recogni-
tion ability is characterized by an ORE, whereby performance
is relatively more accurate for faces of one’s own race.
Second, psychological findings support the assumption that
faces of all races should be equally recognizable, if one applies
appropriate features to analyze a particular race of faces.

B. Racial Bias - Algorithms

Given that humans show an other-race effect for face
recognition, it is not surprising that previous research has
investigated the effects of race on the accuracy of face recog-
nition algorithms [14], [15], [16], [17], [18], [19], [20], [21].
The issue of bias has been studied also in the wider field
of biometrics, including for fingerprint, iris, finger vein, and
palmprint [22]. For obvious reasons, these effects focus gener-
ally on race bias (accuracy differences as function of stimulus
race) and not the other-race effect (interaction between the
race of the face and race of stimulus). To clarify, as we use it
here, race bias denotes algorithm accuracy differences across
groups of faces that vary in race. The integration of state-of-
the-art face recognition algorithms in applied settings (e.g.,
airports) underscores the importance of measuring the effects
of race on the accuracy of face recognition algorithms. In what
follows, we divide this review of race bias in face recogni-
tion algorithms into studies that examine previous-generation
algorithms and those that study DCNNs (see, also for brief
overview of this topic see [23]).

1) Pre-DCNN Algorithms: Differences in the accuracy of
face recognition algorithms as a function of race have been
reported consistently since the early 1990’s. One of the first
studies to demonstrate a race bias in algorithms examined early
neural network models based on auto-associative learning and
principal components analysis (PCA) [2]. This study showed

that experience-based computational models are influenced by
race, but only when the basic features used to encode faces
were derived from the statistical structure of the training data.
The model was trained with either Asian faces, as the minority
race, and Caucasian faces, as the majority race, or vice-versa.
The authors found greater identification accuracy for majority-
race faces than for minority-race faces, regardless of whether
Caucasian or Asian faces were the majority/minority. This sug-
gests that identification accuracy was greater for the race with
which the model had greater “experience”.

A decade later, researchers examined the performance of
face recognition models from the early 2000’s for faces of
different races [14]. These models likewise showed differential
accuracy as a function of the race of the face, but only when
the features used to represent faces were derived from training.
Models based on dynamic link architectures, which use preset
(hard-coded) features from the visual image, did not show bias,
whereas models based on PCA did [24].

Race bias for algorithms has been studied also using race
as a covariate [15], [16]. In 2004, Givens et al. found that
covariates, such as race, differentially affected algorithm accu-
racy [15]. Covariates were measured for three algorithms [25],
[26], [27]. Non-Caucasian subjects were easier to recognize
than Caucasian subjects. Similarly, in a subsequent study, the
three best algorithms from a 2004-2006 algorithm competi-
tion [28] showed that images of non-Caucasians (with the
exception of African-Americans)1 were recognized more accu-
rately than Caucasian images. Comparable results were found
using a fused algorithm of the top three performing algorithms
in a 2006 algorithm competition [16]. Here, non-Caucasian
faces (mostly Asian) were identified more accurately than
Caucasian faces. However, the effect of race was smaller than
the effect of other factors, such as face size and environment
(indoor or outdoor setting). Taken together, these studies show
that race, as a covariate, impacts algorithms in ways that are
not easy to predict.

In 2011, Phillips et al. further explored the effects of race
and found that the origin of the algorithm (i.e., the part of
the world where it was developed) mediates race bias in algo-
rithms [17]. They compared two fused algorithms: a Western
algorithm (created from a fusion of 8 Western algorithms) and
an East Asian algorithm (created from a fusion of 5 East Asian
algorithms). Both algorithms demonstrated an other-race effect
for face identification. The Western algorithm performed more
accurately for Caucasian faces and the East Asian algorithm
was more accurate for East Asian faces. This is the only study
that shows that algorithm origin can predict race bias. The
algorithms tested in this study were “black-box” algorithms
(the algorithms and their implementations were unknown to
the researchers who tested for race bias). Differences in the
racial composition of the training datasets for Western and
East Asian algorithms may have contributed to the race bias.

Perhaps the best known and most comprehensive compari-
son done on pre-DCNN algorithms was reported in 2012 [18].
In that study, Klare et al., examined the role of demographics

1Terms used to describe racial/ethnic groups are used as they appear in the
original published papers.
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on the accuracy of three commercial off-the-shelf algo-
rithms (COTS), in addition to three in-house algorithms
(two non-trainable and one trainable algorithm). Researchers
tested effects of race (Black, White, and Hispanic), gender
(male/female) and age (young: 18 to 30, middle-aged: 30 to
50, and old: 50 to 70). The results converged on the finding
that performance for young, Black, and female faces suffered
relative to other demographic groups across all algorithms.
Additionally, the authors found that equitable training across
all groups (for the trainable algorithms) reduced the effects of
specific demographics biases, but did not eliminate them.

2) DCNN Algorithms: In 2014, the accuracy and gener-
alizability of face recognition algorithms increased markedly
with the introduction of algorithms based on DCNNs. These
networks employ a series of pooling and convolution opera-
tions across multiple layers of simulated neurons. The result
of the computations is a compressed representation of a face
at the top-layer of network [29]. This face descriptor can be
examined directly to evaluate the quality of face codes as a
function of race and other demographic variables.

Given the prominence of automatic face recognition in
social media and security, it is important to know whether
these new algorithms show race biases similar to those seen
in previous-generation algorithms. To date, only a few studies
have examined race bias in DCNNs trained for face recogni-
tion [19], [20], [21], [30], [31]. In 2016, Khiyari and Wechsler
evaluated algorithm accuracy using single- and multi-class
demographic groups including: gender (male/female), age
(young, middle age, older adult), and race (Caucasian/Black).
Two algorithms were tested: a COTS face recognition algo-
rithm and a publicly available DCNN (VGG-Face algo-
rithm [32]) [19]. In the single-class demographics group,
accuracy for both algorithms was lower for female, Black, and
young groups. These results replicated previous research on
older generation algorithms [18]. Notably, although VGG-Face
had a greater overall verification accuracy, it also performed
more accurately for images of Caucasians than for images of
Black individuals, and showed more race bias than the COTS
algorithm. For multi-class demographic group comparisons,
accuracy varied widely. Over all comparisons, however, accu-
racy was greatest for middle-aged White males and was lowest
for young Black females.

Cook et al. in 2019, tested the effect of demograph-
ics on eleven commercial systems (specific algorithms not
disclosed) [30]. Each algorithm acquired images from 363 sub-
jects (mostly Black or African-American and White individ-
uals), across multiple demographic groups. Covariate results
showed that skin reflectance had the greatest impact on
performance. Lower (darker) skin reflectance was associated
with longer acquisition times and lower same-identity distri-
bution similarity scores across all systems. Following this,
Howard et al. in 2019, tested Black or African-American
and White faces on a “leading commercial algorithm” [31].
False accept rates (FARs) were greater for White males than
for Black males. These results are at odds with previous and
subsequent literature (see [18], [19], [20], [21]). The authors
suggest that these contradictory results could be explained by
the diverse age range in their dataset.

Krishnapriya et al. [20] compared accuracy for African
American and Caucasian faces across four algorithms: two
COTS algorithms, VGG-Face (a DCNN), and a ResNet-based
DCNN [33]. The newer of the two COTS and the ResNet
algorithm performed best on African American faces. By con-
trast, VGG-Face and the older COTS performed better on
Caucasian faces. Further evidence of race bias was found in
the thresholds functions for FARs, which differed for African
American faces and Caucasian faces. (Threshold functions
will be discussed in the next section). In the same study,
the effect of photo quality on estimates of race bias was also
examined [20]. Results showed that overall accuracy improved
when only International Civil Aviation Organization (ICAO)-
complaint images were used in the analysis. These results
provide additional evidence of race bias in newer DCNNs,
as well as a first look at how image quality can affect
accuracy.

In more recent work, Krishnapriya et al. [34] examined
performance for African-Americans and Caucasians, using
ArcFace and VGGFace2. First, they measured performance
with an ROC curve and found better accuracy for African-
Americans than for Caucasians. However, their false match
errors were higher for African-Americans, whereas false non-
match errors were higher for Caucasians. Second, darker
skin tone, per se, did not account for the higher false
match rate seen for African-Americans. Third, more simi-
lar skin tone, within face pairs, correlated with false match
errors.

Serna et al. also examined the face recognition performance
of DCNNs [35]. Across 12 popular face data sets, they gen-
erated demographic labels by a semi-automatic process. They
divided the faces into three groups, based on estimated coun-
try of “ancestral origins,” which is a proxy for ethnicity/race.
Group 1 consisted of people from “Europe, North-America,
and Latin-America”; Group 2 consisted of people from “Sub-
Saharan Africa, India, Bangladesh, and Butan, among others”;
and Group 3: people from “Japan, China, Korea, and other
countries in that region”. Across the 12 data sets, 77% of the
identities are in Group 1, 14% in from Group 2, and 7% in
Group 3. For gender, 60% of the identities are male and 40%
are female.

The authors created the DiveFace data set, which has iden-
tities equally distributed across gender and the three groups.
On this set, they tested VGG-Face and Resnet-50. They found
higher error rates, and less discriminative power, for Group 3
faces than for Group 1 faces. For all three groups, they found
higher error rates for females.

Most notably, a comprehensive report of demographic
effects on face recognition algorithms was released by the
National Institute of Standards and Technology (NIST) in late
2019 [21]. State-of-the-art algorithms from industry and aca-
demics volunteered to be tested. Performance was measured
on four United States (U.S.) government face image databases
that consisted of: (a) U.S. domestic mugshots, (b) immigra-
tion benefits application photographs from a global population,
(c) Visa application photographs, and (d) border crossing pho-
tographs of travelers entering the U.S. At the time of release,
the authors reported results “on over 18.27 million images of
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8.49 million people from 189 (mostly commercial) algorithms
from 99 developers” (pp.1).2

The mugshot database was labeled with ethnic/racial meta-
data. For the other three data sets, the majority race of the
country-of-origin of the photo served as the proxy for the
demographic label. The authors limited the countries in their
analysis to those countries where a single race of ethnicity
dominated. The report lists experimental results on all four
data sets, their demographic labels, and numerous scenarios.
Across these experimental conditions, there is one common
meta-result, race bias over the algorithms tested varies substan-
tially, sometimes over orders of magnitude between the least
and most biased algorithm in an experiment. This meta-result
strongly recommends that system users measure bias for each
task. Because of the variability in bias, the detailed information
NIST provides on the performance of these face recogni-
tion algorithms is highly valuable for researchers, algorithm
developers, users, and policy makers.

Lesson 2: Nearly all face recognition algorithms tested in
the past 30 years show performances differences as a func-
tion of the race of the faces tested. In some cases, algorithms
have shown a “human-like” interaction between the geographic
origin of the algorithm and face race.

C. Measuring Face Identification Accuracy

Before we consider the measurement of race bias, we
digress briefly to discuss the standard procedures used for mea-
suring the accuracy of face recognition algorithms, in general.
As we will see, standard methods for measuring algorithm
accuracy partly underlie the difficulties we have in estimating
race bias in these systems. See [36] for further discussion on
this topic.

The standard approach to measuring the accuracy of face
recognition algorithms is based on Signal Detection Theory
(SDT) [37]. The problem is formulated as a face-verification
task whereby pairs of images, either of the same person or of
two different people, are compared. The algorithm generates
a similarity score that serves to index the likelihood that the
images show the same person (high similarity) or two different
people (low similarity). Accuracy is measured based on the
degree of overlap between the similarity score distributions for
different-identity pairs and for same-identity pairs (See Fig. 1).

Algorithm accuracy is summarized by the receiving operat-
ing characteristic (ROC) curves and synopsized as the area
under this curve (AUC). A lower AUC score indicates a
larger overlap between the two distributions, which suggests
poorer discriminability. A higher AUC score indicates a less
overlap between the two distributions, and greater discrim-
inability. AUC = 0.5 indicates chance performance. AUC =
1.0 indicates perfect accuracy. ROC and AUC scores provide
robust measures of overall algorithm accuracy over the entire
population of face image pairs in the distributions.

In applications, identification decisions require a threshold
similarity score, over which an image pair is judged as an
identity “match”. Once a threshold is set, additional measures

2As of this writing, the NIST test is on-going, and accepting new algorithm
submissions for evaluation, see https://face.nist.gov.

Fig. 1. Signal Detection Model of Identification Accuracy. Similarity score
histograms for same-identity image pairs (pink) and different-identity image
pairs (teal) are shown. Decision thresholds (gray dotted line) specifies the
similarity score cut-off for identification and determines false rejection and
false accept rates.

of identification accuracy become relevant. These measures
include false rejection rate (FRR) (proportion of same-identity
pairs that have been misjudged as different-identity pairs) and
false accept rate (FAR) (proportion of different-identity pairs
that have been misjudged as same-identity pairs). Threshold
placement determines algorithm accuracy at specific FRR and
FAR (see Fig. 1).

A common practice is to set a threshold that yields a very
small proportion of false accepts (e.g., 1/1,000, 1/10,000 or
less). In an application, the critical measure of accuracy then
becomes the verification rate (VR) (same-identity pairs cor-
rectly judged as same-identity pairs) at the user-set threshold.
A threshold function shows FAR as a function of similarity
score. As noted, threshold functions may differ by face race.
We will discuss this issue in greater detail in the next section.

Lesson 3: Algorithm accuracy measures can summarize the
overall performance of a system (ROC and AUC) based on the
underlying distributions. Or, they can summarize performance
given both a user-set threshold and the underlying distri-
butions. Consequently, identification can be measured with
threshold-independent (ROC, AUC) or threshold-dependent
measures (e.g., VR @ FA = 0.001). Both types of mea-
sures serve a useful function, but they are not guaranteed to
converge.

D. Factors Underlying Race Bias

The underlying elements of race bias in algorithm
performance are easily seen once we understand how the
problem of face identification is formulated. The issues can
be divided into data-driven and scenario-modeling issues.

1) Data-Driven Problems: It is clear that the race bias in
algorithm performance stems from the underlying same- and
different-identity distributions. The dilemma is that the dis-
tribution parameters (e.g., means, standard deviations, skews)
that characterize the population as a whole, may differ for par-
ticular demographic subgroups (race, age, gender). Differences
among the subgroup distributions explain both everything
and nothing about the underlying problem of bias. What we
would like to know is why these distributions differ. Obvious
possibilities include the following.
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First, it is possible that an algorithm produces representa-
tions that differ in quality (or uniqueness) for faces in different
subgroups. Characteristics of the algorithm, such as the archi-
tecture or training data, may inadvertently produce biased
representations. An algorithm with poor quality representa-
tions for particular subgroups would show race biases with
any dataset. When the quality of the representation depends
on adequate training with representative faces of a subset, we
should expect bias. The racial composition of training datasets
has been shown to affect the accuracy of previous generation
algorithms (e.g., [2], [18]).

The problem for DCNNs may be more challenging, because
they must be trained with enormous numbers of real-world
(unconstrained) images. These images vary, not only across
demographics, but also in quality and image factors (illumi-
nation, viewpoint, etc.). Therefore, it is difficult to isolate the
impact of the racial composition of the training set on race
bias. Because of the complexities of assessing the impact of
training sets on DCNNs, there are currently no relevant results
for these algorithms in the literature. Here, we concentrate on
bias in datasets used to test DCNNs. These affect estimates of
performance across race.

Second, demographic subgroups may be disproportion-
ately represented in the test (i.e., measurement) distributions,
potentially resulting in errors in the estimation of algorithm
performance for certain demographic groups. For example,
algorithms that operate on a specific population, should include
test images representative of the individuals in the popula-
tion. Also, some caution is warranted in assuming categorical
structure for race with limited justification. Specifically, in
biological terms, race is not categorical, and if we consider
the issue from the more realistic perspective of mixed-race
individuals, the problem is more complex.

Third, it is possible that the quality of the training or test
photographs differs across subgroups [20], [30], [34]. For
example, Krishnapriya et al. [20] found that image quality
differences for the test faces explained some, but not all,
of the variation in race bias. When only ICAO-compliant
images were used to measure race bias, African American and
Caucasian face accuracy improved across all four algorithms.
The data on which race bias measurements are computed can
contribute to variable estimates of race bias in face recognition
algorithms.

Fourth, it is possible that nested subgroups of faces have
characteristics that amplify or hide bias effects. For example,
race bias effects may be stronger for female faces than for male
faces; or race bias may occur for challenging stimuli, but not
for easier stimuli. We will see an example of this latter case
in the experiment we present.

Lesson 4: Data-driven sources of race bias are defined
objectively by differences in the underlying distributions of
demographic sub-populations of faces. Specifically, the distri-
butions of algorithm-generated similarity scores for same- and
different-identity face pairs may differ for faces from different
demographic groups (See Fig. 1). There are multiple reasons
why these differences might occur. The underlying factors are
not mutually exclusive. Therefore, in any given scenario, one
or more data-driven anomalies might contribute to system bias.

2) Scenario-Modeling: These are directly under the control
of the “user” and include: (a) thresholds effects and (b) the
formulation and control of the demographic homogeneity of
the different-identity distribution. Beginning with thresholds,
it is clear that a uniform threshold is not adequate or equitable
when the underlying sub-population distributions differ. This
is a concern with race bias. Previous studies have shown that
the threshold needed to achieve a consistent FAR and/or VR
varies across racial groups [20], [34], [38]. These differences
underscore the importance of threshold shifts. Setting a single
threshold for all racial groups may produce different estimates
of FAR and VRs for different sub-groups of faces. This can
be a source of race bias in the operation of algorithms.

For example, O’Toole et al. in 2012, measured identifica-
tion accuracy for Asian and Caucasian faces for two different
stimulus sets using ROC curves and threshold functions [38].
ROC curves showed a slight advantage for Asian faces on the
easier stimulus set, and an advantage for Caucasian faces on
the more difficult stimulus set. However, the threshold func-
tions, which show the relationship between similarity score
and FAR, differed for the two datasets. For both datasets, there
was a greater threshold shift for Asian faces than for Caucasian
faces. This threshold difference indicates that achieving equi-
table FARs across both racial groups, would require setting a
larger threshold for Asian faces compared to Caucasian faces.

Threshold differences have been demonstrated also for
African American and Caucasian faces [20], [34]. As noted,
ROC curves showed that two out of four algorithms were
less race biased for African American faces compared to
Caucasian faces. However, despite this advantage, threshold
shifts for African American faces differed uniformly for all
four algorithms. For African American faces, all four algo-
rithms needed a higher threshold to achieve a given FAR, and
a lower threshold to achieve a given VR. These results pro-
vide additional evidence that uniform thresholds across race
groups may produce different accuracy results for each race
group. This study [20] also provides evidence that ROC curves
can obscure information that threshold functions reveal. See
Lesson 3.

A second scenario-modeling concern involves the demo-
graphic homogeneity of the different-identity distribution.
Common practice is to measure algorithm accuracy with all
possible different-identity pairs as the baseline. However, this
practice can be problematic when different-identity pairs also
differ demographically (e.g., by race, gender, age) [38]. If
this is the case, the distribution for different-identity pairs
will include demographic differences, in addition to identity
differences. Clearly, the average similarity score computed
for different-identity pairs that also differ in demographic
group will be lower than the average similarity score for
different-identity pairs within a homogeneous demographic.
This demographic heterogeneity can shift the position of
the different-identity distribution leftward, thereby artificially
inflating algorithm verification performance. A solution to
this problem is “yoking”. Yoking is defined as controlling
the different-identity distribution so that all different-identity
pairs are demographically comparable (e.g., same race, age,
gender) [38]. This constraint produces a more homogeneous
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different-identity distribution (compared to including all pos-
sible different-identities in the analysis) and provides a more
accurate assessment of accuracy and race bias.

Previous research demonstrates that yoking alters estimates
of algorithm accuracy [31], [38], [39]. O’Toole et al. first
demonstrated the effect of yoking on identification
performance measures for Asian and Caucasian faces [38].
Different-identity distributions were demographically con-
trolled in four groups: no control, race only, gender only,
race and gender. The authors found that overall accuracy
decreased with increased demographic control.

Lesson 5: Scenario-modeling problems are (partially) under
the control of the researcher and can directly impact estimates
of race bias. System-users should consider how thresholds and
yoking controls affect each race of interest independently.

II. RACE BIAS IN FACE IDENTIFICATION ALGORITHMS

In this section, we present an experiment that examined race
bias as a function of stimulus difficulty, using items previously
calibrated for challenge-level (see Stimuli). Four face recogni-
tion algorithms (one pre-DCNN and three DCNNs) were tested
on Caucasian and East Asian face pairs. We also demonstrate
the effects of yoking across race, and across race and gender,
on estimates of identification accuracy across older and newer
generations of DCNNs. This experiment also serves to high-
light demographic bias issues that challenge algorithms in the
context of the lessons we have learned from previous work.

A. Methods

1) Stimuli: Images were taken from a condensed set of the
Good, Bad, Ugly (GBU) Challenge dataset [40]. The parti-
tions of the GBU dataset provide us with the opportunity to
compare race bias across algorithms and items (image pairs)
that vary in difficulty. The GBU dataset contains images par-
titioned into three difficulty levels, referred to as: the Good,
the Bad, and the Ugly. These difficulty partitions are based on
the similarity scores of the top three performers in the Face
Recognition Vendor Test (FRVT) 2006 [41]. The full GBU set
contains 1,085 images of 437 identities in each partition. In
each partition there are 3,297 match face pairs and 1,173,928
non-match pairs. The dataset includes frontal images that vary
in environment (e.g., indoors and outdoors) and demograph-
ics (i.e., race, age, gender). The stimuli were captured using
a Nikon D70 6-megapixel single-lens reflex camera.3

All images were collected within a single academic year at
the University of Notre Dame [see [40] for full details on how
the GBU was compiled]. For the purposes of this study, only a
subset of the full GBU dataset was selected. First, we restricted
our analysis to images taken indoors, which limited the vari-
ation in illumination as a confounding factor. Second, given
that East Asian and Caucasian faces represented the majority
of images, only these two racial groups were selected for com-
parison. Although this reduced the race groups we were able
to test, we chose the GBU dataset for testing race bias because
(1) race in the GBU dataset is self-reported, (2) the conditions

3The identification of any commercial product or trade name does not imply
endorsement or recommendation by NIST.

Fig. 2. Example image pairs from the Good (a), the Bad (b), and the Ugly
(c) difficulty partitions. All six images are the same identity [40].

under which the images were taken are identical across and
within race groups, and (3) age range is narrow, which limits
other confounding demographics. For this reason, our analy-
sis was performed on a condensed version of the GBU dataset
(good: 385 identities; bad: 389 identities; ugly: 380 identities).
This condensed GBU dataset includes a total of 5,528 match
pairs (good: 2,563; bad: 1,934; ugly: 1,031) and 540,519 non-
match pairs (good: 239,543; bad: 189,417; ugly: 111,559). (see
Fig. 2 for a stimulus example).

2) Algorithms: Four algorithms were used to compare
verification accuracy for East Asian and Caucasian faces:
A2011 [40], A2015 [32], A2019 [42], A2017b [43]. None
of the algorithms were trained on face images collected at
Notre Dame.4 The A2011 algorithm is a fused algorithm of
three top performing algorithms in the FRVT 2006 conducted
by NIST. This fused algorithm pre-dates DCNNs, and thus
A2011 is the oldest algorithm we tested. This algorithm was
selected as a race-bias assessment of a pre-DCNN face recog-
nition algorithms. Moreover, A2011 has been widely used in
other comparisons [44], [45]. A2015 is a publicly available
DCNN and is commonly as a benchmark for performance
of DCNNs. A2015 is an older, but well established, DCNN
that produces an output of 4,096-dimensional feature vectors.
Previous studies have shown a race bias (greater verifica-
tion accuracy for images of Caucasians compared to images
of Blacks) for A2015 [19], [20]. The A2015 was selected
because of its prominence in the literature as a baseline mea-
sure of algorithm accuracy [19], [20], [44], [46]. A2017b,
which produces 512-dimensional feature vector, is based on
a ResNet-101 architecture and is trained on about 5.7 million
images. Most recently, A2017b was found to be comparable
in accuracy to that of forensic facial examiners [46]. Finally,
A2019 is based on an Inception architecture that produces 512-
dimensional feature vectors also, and is trained on close to one
million images. To our knowledge, no study has previously
examined how A2019 and A2017b perform on different racial
groups. Both A2017b and A2019 were selected because they
represent state-of-the-art algorithms with well-defined train-
ing data. This study provides the first direct comparison of

4The training datasets for A2011 are not known. For the DCNN algorithms
the training datasets are described in the original papers.
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Fig. 3. ROC curves for A2019 (yellow), A2017b (green), A2015 (blue),
A2011 (red). A2019 and A2017b show near perfect performance, followed
by A2011, and A2015.

race bias across a pre-DCNN algorithm, a previous genera-
tion DCNN, and 2 high-performing DCNN algorithms. All
are published and available for scrutiny.

B. Results

1) Overall Accuracy: We computed accuracy by collapsing
across race and GBU distributions to derive a single ROC
curve for each algorithm. ROC curves and AUC scores were
calculated to measure face verification performance accuracy.
ROC curves for all figures are plotted on a log-scale function to
show performance at commonly set FAR = 0.0001 and 0.001
(gray dotted lines) and are race and gender yoked. Overall
accuracy was best for the two newer algorithms, A2019 and
A2017b, followed by A2011, and A2015 (Fig. 3).

2) Yoking: Similarly to overall accuracy, ROC curves were
derived by collapsing across GBU distributions. The effects
of yoking are easily seen on overall accuracy by comparing
results with three yoking conditions. For the no yoking con-
dition, all available different-identity pairs were considered,
regardless of cross-race and cross-gender status of identi-
ties. For the race-yoking condition, only same-race different-
identity pairs were considered. For the race and gender-yoking
condition, only same-race and same-gender different-identity
pairs were considered. Fig. 4 shows that algorithms showed
yoking effects in the predicted directions (accuracy decreased
as yoking constrains increased), but that the magnitude of the
effects varied. (See Lesson 5).

C. Race Bias

1) ROC Curves: Verification accuracy on East Asian and
Caucasian faces was calculated. AUC results for algorithms
A2015, A2019 and A2017b appear in Table I. As can be seen,
by the AUC measure, performance is near ceiling (AUC = 1.0)
in all cases. By this account, all four algorithms show little
to no race bias on overall accuracy for Caucasian and East
Asian faces. Examination of the verification estimates at low
FARs, however, provide a different perspective on the same
data (Fig. 5). These reveal effects of race bias for all algo-
rithms. For A2019 and A2017b, there was no or little bias

Fig. 4. Yoking effects on accuracy for A2019 (yellow), 2017b (green), A2015
(blue), A2011 (red), for no yoking (dashed), race yoking (solid), and race and
gender yoking (dotted).

TABLE I
AUC OF ALGORITHMS A2011, A2015, A2017B, AND A2019 ON

CAUCASIAN FACES AND EAST ASIAN FACES

Fig. 5. ROC curves for Caucasian (teal) and East Asian (orange) faces
for A2019 (top-left), 2017b (top-right), A2015 (bottom-left), A2011 (bottom-
right). AUC measures showed race bias for A2015 only. However, ROC
curves at low FARs (gray dotted lines) show that all algorithms perform more
accurately for Caucasian faces than for East Asian faces.

for FARs larger than 0.001; however, for smaller FARs there
was bias. These results demonstrate a case where overall accu-
racy (threshold-independent) and accuracy at a pre-determined
threshold (threshold-dependent) may lead to different con-
clusions, despite the fact they are internally consistent. (See
Lesson 2 and Lesson 3).

2) Thresholds: We calculated FAR as a function of
the different-identity similarity-scores for East Asian and
Caucasian faces (see Fig. 6). For all four algorithms, the East
Asian threshold function (orange) is always to the right of
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Fig. 6. Threshold functions for Caucasian (teal), East Asian (orange) faces for
A2019 (top-left), A2017b (top-right), A2015 (bottom-left), A2011 (bottom-
right). The plot shows a rightward shift for East Asian faces (orange) relative
to Caucasian (teal) faces indicating that equivalent FARs require a greater
threshold for East Asian faces.

the Caucasian function (teal).5 Because of this shift, a fixed
threshold will yield a smaller FAR for Caucasian faces than
for East Asian faces. To obtain the same FAR for both races
will require separate thresholds for both races. (See Lesson 3
and Lesson 5).

D. Item Difficulty

Performance on each GBU partition was calculated (Fig. 7).
A2019 and A2017b were more accurate than A2015 and
A2011 across all three partitions. A2015 had the lowest verifi-
cation accuracy for the Good and Bad images, whereas A2011
had the lowest accuracy for Ugly. These data are comparable
to previous research that shows the trade-off between A2015
and A2011 in the Bad and Ugly partitions [44]. Accuracy for
the Ugly partition was the lowest across all three difficulty
groups.

1) Race Bias as a Function of Item Difficulty: The GBU
dataset allows us to examine a novel problem for DCNNs, race
bias as a function of well-defined item difficulty. We computed
ROC curves for East Asian and Caucasian faces across the
three difficulty levels of GBU (Fig. 8). Accuracy for the Good
partition is nearly perfect for both East Asian and Caucasian
faces. A2015, and to a lesser extent A2011, showed a race
bias in favor of Caucasian faces at FAR = 0.0001. For the
Bad partition, A2017b and A2019 again showed nearly no
race bias, whereas A2011 and A2015 showed greater verifica-
tion accuracy for Caucasian faces at FAR = 0.0001. For the
Ugly partition, no algorithm achieved perfect performance for
either race. All algorithms, except for A2011, showed greater
accuracy for Caucasian faces compared to East Asian faces.
(See Lesson 4).

III. DISCUSSION

We reviewed and analyzed literature published over the last
50 years from humans and algorithms on race bias in face
recognition. Five lessons in measuring race bias for algorithms

5Because the similarity score scales differ across algorithms, direct com-
parisons for threshold shift magnitudes across algorithms is not possible.

Fig. 7. ROC curves for Item Difficulty. Accuracy for A2019 (yellow), 2017b
(green), A2015 (blue), A2011 (red) on Good (top panel), Bad (middle panel),
Ugly (bottom panel). A2019 and A2017b were the most accurate across all
three partitions.

emerged in our review of past work. These five lessons inform
our understanding of the data-driven and scenario-modeling
factors that impact race bias in face recognition algorithms.
These factors are applied to novel empirical data, which we
collected on race bias as a function of item pair difficulty for
three recent DCNN algorithms and one pre-DCNN algorithm.

To begin, we review data-driven and scenario-based factors
that impact race bias. The sources of bias that a researcher
must consider include the following:

• Data-driven factors:
– sub-population distributions: the population statistics

for demographic groups
– algorithm: the quality of the algorithm’s representa-

tions across demographic groups
– representative images: the subgroup’s representation

of the population of interest
– imaging conditions: the imaging conditions directly

affect the difficulty of comparing images.
• Scenario-modeling:

– threshold: appropriate selection of threshold for a
desired FAR for each racial group, independently

– demographic-pairing: modeling the homogeneity of
the different-identity distribution

This is the first study to consider the full range of factors
that impact race bias in face recognition algorithms. Attention
to race bias factors in past work has often been piecemeal.
For example, common focus has been on the role of training
data, and although this is an important factor, there remains a
broad scope of other factors to consider. Data-driven factors
underlie real differences in an algorithm’s capacity to recog-
nize faces of different races. Scenario-based factors are part
of the measurement process and affect estimates of algorithm
bias. The complexity of these factors, and their potential to
interact, makes a general assessment of bias for face recog-
nition algorithms unfeasible. Consequently, race bias must be
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Fig. 8. East Asian and Caucasian ROC Curves for GBU partitions (A2019, top-left; A2017b, top-right; A2015, bottom-left; A2011, bottom-right). Top panel:
Good and Bad partitions (left and right) show nearly perfect accuracy for A2019 and A2017b for all faces. A2015 shows greater accuracy for Caucasian
faces. Bottom panel: Ugly partition, shows some degree of race bias for all algorithms except A2011.

measured for each particular scenario, algorithm, race, and
dataset.

The empirical data presented here provides two additional
key contributions to the burgeoning literature on race bias.
First, an updated analysis of race bias across three genera-
tions of face recognition algorithms (pre-DCNN, older DCNN,
and two newer DCNNs) provides insight on the evolution of
race bias. We find that with each new generation of algo-
rithms, accuracy improves for both race groups. However,
results from threshold-dependent measures suggest that accu-
racy differences across race groups at specific points of interest
remain problematic. Second, we provide novel findings on the
impact of item difficulty on race bias accuracy. Specifically, as
item challenge level increased demographic differences were
magnified.

One limitation in our study was the use of only two racial
groups in our analysis. As noted, the GBU dataset was selected
because of the excellent control it provides of factors other
than race. This photometric and demographic control makes it
ideal for studying race bias, but somewhat limits the ecologi-
cal validity. Although the analysis was limited to two groups,
the lessons learned and methodological considerations apply
across all race groups. Moreover, the focus on only two races
allowed us to explore a wide range of possible factors that
may contribute to bias.

A major challenge going forward is to measure algorithm
performance in the context of demographics that accurately
reflect the full range of human diversity. At present, “race”
is defined in various ways (e.g., self-identification, human
meta-data labeling, country/region of origin) in the literature.

Once defined, however, researchers treat race as a categorical
variable that delineates homogeneous sets of faces. Typically,
no mention is made of the potential for diversity differ-
ences within groups of faces (e.g., East Asian faces from
China, Japan, and Korea). These underlying definitional ambi-
guities have implications for understanding the sources of
performance bias in any given experiment, and for comparing
results across experiments that define face groups in different
ways.

This brings us back to the question that motivated this work.
Where are we on measuring race bias? Our findings point
to strong improvements across racial groups and concomitant
declines in race bias overall. However, these gains may vary
as a function of item difficulty–a factor that has not been
considered previously in assessing race bias for algorithms.
With the rise of DCNNs, the complexity of the bias problem
increases, due to the need for extremely large training sets and
the large number of parameters that may impact performance
on subsets of faces. Clearly, race bias in face recognition algo-
rithms is a critical problem that remains unsolved. Although
promising approaches are on the horizon (see, [47]), these
methods need to be tested more thoroughly. In many cases,
they are still constrained to work on specific challenges that
may, or may not, generalize to other types of problems. Until
a technical solution to the problem of bias is found, algorithms
need to be tested individually and thoroughly for performance
across racial groups. Our holistic assessment is integral to
understanding that the solution to the race bias problem is
not simple or straightforward. The intricacy of this issue is
underscored by the multitude of underlying factors that impact
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race bias. From an applied perspective, each application needs
to measure the bias that accounts for the algorithms, data-
driven factors and scenario conditions. In addition, bias needs
to be continuously monitored, because of changes in the data
characteristics, demographic shifts, and algorithm updates.

IV. CONCLUSION

The five lessons we present provide a starting point for
developing a principled understanding of how race and demo-
graphic bias should be assessed for face recognition algo-
rithms. We also considered how image difficulty impacts these
estimates of race bias and how this has changed with the evo-
lution of face recognition algorithms. At this point in time,
advances in the field require simultaneous attention to all
potential sources of race bias in face recognition algorithms.
Both data-driven and scenario-modeling factors and their inter-
actions can impact race bias in face recognition algorithms.
This holistic assessment provides a realistic and informed
starting point for future studies in this area.

ACKNOWLEDGMENT

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the ODNI, IARPA, or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon.

REFERENCES

[1] R. S. Malpass and J. Kravitz, “Recognition for faces of own and other
race,” J. Pers. Soc. Psychol., vol. 13, no. 4, pp. 330–334, 1969.

[2] A. J. O’Toole, K. Deffenbacher, H. Abdi, and J. C. Bartlett, “Simulating
the ‘other-race effect’ as a problem in perceptual learning,” Connection
Sci., vol. 3, no. 2, pp. 163–178, 1991.

[3] C. A. Meissner and J. C. Brigham, “Thirty years of investigating the
own-race bias in memory for faces: A meta-analytic review,” Psychol.
Public Policy Law, vol. 7, no. 1, pp. 3–35, 2001.

[4] J. C. Brigham and R. S. Malpass, “The role of experience and contact in
the recognition of faces of own- and other-race persons,” J. Soc. Issues,
vol. 41, no. 3, pp. 139–155, 1985.

[5] C. M. Bukach, J. Cottle, J. Ubiwa, and J. Miller, “Individuation experi-
ence predicts other-race effects in holistic processing for both Caucasian
and black participants,” Cognition, vol. 123, no. 2, pp. 319–324, 2012.

[6] D. J. Kelly et al., “Three-month-olds, but not newborns, prefer own-race
faces,” Develop. Sci., vol. 8, no. 6, pp. F31–F36, 2005.

[7] D. J. Kelly, P. C. Quinn, A. M. Slater, K. Lee, L. Ge, and O. Pascalis,
“The other-race effect develops during infancy: Evidence of perceptual
narrowing,” Psychol. Sci., vol. 18, no. 12, pp. 1084–1089, 2007.

[8] K. Pezdek, I. Blandon-Gitlin, and C. Moore, “Children’s face recognition
memory: More evidence for the cross-race effect,” J. Appl. Psychol.,
vol. 88, no. 4, pp. 760–763, 2003.

[9] S. Sangrigoli, C. Pallier, A.-M. Argenti, V. Ventureyra, and
S. de Schonen, “Reversibility of the other-race effect in face recognition
during childhood,” Psychol. Sci., vol. 16, no. 6, pp. 440–444, 2005.

[10] L. Yi et al., “Children with autism spectrum disorder scan own-race
faces differently from other-race faces,” J. Exp. Child Psychol., vol. 141,
pp. 177–186, 2016.

[11] P. Chiroro and T. Valentine, “An investigation of the contact hypothesis
of the own-race bias in face recognition,” Quart. J. Exp. Psychol. Sec.
A, vol. 48, no. 4, pp. 879–894, 1995.

[12] G. Anzures et al., “Own- and other-race face identity recognition in chil-
dren: The effects of pose and feature composition,” Develop. Psychol.,
vol. 50, no. 2, pp. 469–481, 2014.

[13] D. S. Y. Tham, J. G. Bremner, and D. Hay, “The other-race effect in
children from a multiracial population: A cross-cultural comparison,” J.
Exp. Child Psychol., vol. 155, pp. 128–137, Mar. 2017.

[14] N. Furl, P. J. Phillips, and A. J. O’Toole, “Face recognition algorithms
and the other-race effect: Computational mechanisms for a develop-
mental contact hypothesis,” Cogn. Sci., vol. 26, no. 6, pp. 797–815,
2002.

[15] G. Givens, J. R. Beveridge, B. A. Draper, P. Grother, and P. J. Phillips,
“How features of the human face affect recognition: A statistical com-
parison of three face recognition algorithms,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 2. Washington,
DC, USA, 2004, pp. 381–388.

[16] J. R. Beveridge, G. H. Givens, P. J. Phillips, B. A. Draper, and
Y. M. Lui, “Focus on quality, predicting FRVT 2006 performance,” in
Proc. 8th IEEE Int. Conf. Autom. Face Gesture Recognit., Amsterdam,
The Netherlands, 2008, pp. 1–8.

[17] P. J. Phillips, F. Jiang, A. Narvekar, J. Ayyad, and A. J. O’Toole, “An
other-race effect for face recognition algorithms,” ACM Trans. Appl.
Percept., vol. 8, no. 2, p. 14, 2011.

[18] B. F. Klare, M. J. Burge, J. C. Klontz, R. W. V. Bruegge, and A. K. Jain,
“Face recognition performance: Role of demographic information,”
IEEE Trans. Inf. Forensics Security, vol. 7, pp. 1789–1801, 2012.

[19] H. El Khiyari and H. Wechsler, “Face verification subject to vary-
ing (age, ethnicity, and gender) demographics using deep learning,” J.
Biometrics Biostat., vol. 7, p. 323, Jan. 2016.

[20] K. Krishnapriya, K. Vangara, M. C. King, V. Albiero, and K. Bowyer,
“Characterizing the variability in face recognition accuracy relative to
race,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
Workshops, Long Beach, CA, USA, Jun. 2019, pp. 2278–2285.

[21] P. Grother, M. Ngan, and K. Hanaoka, Face Recognition Vendor
Test (FRVT) Part 3: Demographic Effects, Nat. Inst. Stand. Technol.,
Gaithersburg, MD, USA, 2019.

[22] P. Drozdowski, C. Rathgeb, A. Dantcheva, N. Damer, and C. Busch,
“Demographic bias in biometrics: A survey on an emerging challenge,”
IEEE Trans. Technol. Soc., vol. 1, no. 2, pp. 89–103, Jun. 2020.

[23] J. G. Cavazos, G. Jeckeln, Y. Hu, and A. J. O’Toole, Deep Learning-
Based Face Analytics, Cambridge Univ. Press, To be published, ch.
Strategies of face recognition by humans and machines.

[24] L. Wiskott, J.-M. Fellous, N. Kruger, and C. von der Malsburg, “Face
recognition by elastic bunch graph matching,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 19, no. 7, pp. 775–779, Jul. 1997.

[25] M. A. Turk and A. P. Pentland, “Face recognition using Eigenfaces,” in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Maui,
HI, USA, 1991, pp. 586–591.

[26] B. Moghaddam and A. Pentland, “Probabilistic visual learning for object
representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7,
pp. 696–710, Jul. 1997.

[27] K. Okada et al., Face Recognition: From Theory to Applications, H.
Wechsler, P. J. Phillips, V. Bruce, F. F. Soulie, and T. S. Huang, Eds.
Berlin, Germany: Springer-Verlag, 1998, pp. 186–205.

[28] J. R. Beveridge, G. H. Givens, P. J. Phillips, and B. A. Draper, “Factors
that influence algorithm performance in the face recognition grand chal-
lenge,” Comput. Vis. Image Understand., vol. 113, no. 6, pp. 750–762,
2009.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems. Red Hook, NY, USA: Curran, 2012,
pp. 1097–1105.

[30] C. M. Cook, J. J. Howard, Y. B. Sirotin, J. L. Tipton, and A. R. Vemury,
“Demographic effects in facial recognition and their dependence on
image acquisition: An evaluation of eleven commercial systems,”
IEEE Trans. Biometrics Behav. Identity Sci., vol. 1, no. 1, pp. 32–41,
Jan. 2019.

[31] J. J. Howard, Y. Sirotin, and A. Vemury, “The effect of broad and specific
demographic homogeneity on the imposter distributions and false match
rates in face recognition algorithm performance,” in Proc. 10th IEEE Int.
Conf. Biometrics Theory Appl. Syst. (BTAS), Tampa, FL, USA, 2019,
pp. 1–8.

[32] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in Proc. Brit. Mach. Vis. Conf. (BMVC), vol. 1, 2015, p. 6.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., Las
Vegas, NV, USA, 2016, pp. 770–778.

[34] K. S. Krishnapriya, V. Albiero, K. Vangara, M. C. King, and
K. W. Bowyer, “Issues related to face recognition accuracy varying
based on race and skin tone,” IEEE Trans. Technol. Soc., vol. 1, no. 1,
pp. 8–20, Mar. 2020.

Authorized licensed use limited to: Yunnan University. Downloaded on July 25,2025 at 07:38:42 UTC from IEEE Xplore.  Restrictions apply. 



CAVAZOS et al.: ACCURACY COMPARISON ACROSS FACE RECOGNITION ALGORITHMS: WHERE ARE WE ON MEASURING RACE BIAS? 111

[35] I. Serna, A. Morales, J. Fierrez, M. Cebrian, N. Obradovich, and
I. Rahwan, “Algorithmic discrimination: Formulation and exploration
in deep learning-based face biometrics,” in Proc. AAAI Workshop Artif.
Intell. Safety (SafeAI), 2020, pp. 146–152.

[36] K. Bowyer, “Why face recognition accuracy varies due to race,”
Biometric Technol. Today, vol. 2019, no. 8, pp. 8–11, 2019.

[37] J. A. Swets, Signal Detection and Recognition in Human Observers:
Contemporary Readings. New York, NY, USA: Wiley, 1964.

[38] A. J. O’Toole, P. J. Phillips, X. An, and J. Dunlop, “Demographic effects
on estimates of automatic face recognition performance,” Image Vision
Comput., vol. 30, no. 3, pp. 169–176, 2012.

[39] A. J. O’Toole and P. J. Phillips, “Five principles for crowd-source exper-
iments in face recognition,” in Proc. 12th IEEE Int. Conf. Autom. Face
Gesture Recognit. (FG), Washington, DC, USA, 2017, pp. 735–741.

[40] P. J. Phillips et al., “An introduction to the good, the bad, & the ugly face
recognition challenge problem,” in Proc. Face Gesture, Santa Barbara,
CA, USA, 2011, pp. 346–353.

[41] P. J. Phillips et al., “FRVT 2006 and ICE 2006 large-scale experimental
results,” IEEE Trans. PAMI, vol. 32, no. 5, pp. 831–846, May 2010.

[42] R. Ranjan et al., “A fast and accurate system for face detection, identi-
fication, and verification,” IEEE Trans. Biometrics Behav. Identity Sci.,
vol. 1, no. 2, pp. 82–96, Apr. 2019.

[43] R. Ranjan, C. D. Castillo, and R. Chellappa, “L2-constrained soft-
max loss for discriminative face verification,” 2017. [Online]. Available:
arXiv:1703.09507.

[44] P. J. Phillips, “A cross benchmark assessment of a deep convolutional
neural network for face recognition,” in Proc. 12th IEEE Int. Conf.
Autom. Face Gesture Recognit. (FG), Washington, DC, USA, 2017,
pp. 705–710.

[45] P. J. Phillips and A. J. O’Toole, “Comparison of human and computer
performance across face recognition experiments,” Image Vis. Comput.,
vol. 32, no. 1, pp. 74–85, 2014.

[46] P. J. Phillips et al., “Face recognition accuracy of forensic examiners,
superrecognizers, and face recognition algorithms,” Proc. Nat. Acad.
Sci., vol. 115, no. 24, pp. 6171–6176, 2018.

[47] S. Gong, X. Liu, and A. K. Jain, “Jointly de-biasing face recogni-
tion and demographic attribute estimation,” 2019. [Online]. Available:
arXiv:1911.08080.

Jacqueline G. Cavazos received the B.A. degree
in psychology from California State University,
Fullerton (CSUF), in 2016. She is currently pursu-
ing the Doctoral degree with the Dr. Alice O’Toole’s
Face Perception Lab, University of Texas at Dallas
in the psychological sciences program. During her
time at CSUF, she participated in the NIH-funded
Maximizing Access to Research Careers program
under the mentorship of Dr. Jessie Peissig, where
she studied the effect of race and disguises on face
recognition. She also participated in the Summer

Training Academy for Research Success with the University of California at
San Diego, under the guidance of Dr. Garrison Cottrell. There, her focus was
to map the similarities of emotional words and faces using multidimensional
space. Her research focus includes examining how race impacts face identifi-
cation in humans and machines and the potential ways to mitigate it. She has
presented her work at the annual meetings for the Vision Sciences Society,
and at the Demographic Variation in the Performance of Biometric Systems
Workshop at the Winter Conferences on Applications of Computer Vision.

P. Jonathon Phillips (Fellow, IEEE) received the
Ph.D. degree in operations research from Rutgers
University. He is an Electronic Engineer with
the Information Technology Laboratory, National
Institute of Standards and Technology. He is a lead-
ing Researcher in the fields of computer vision,
face recognition, biometrics, and forensics. He pio-
neered the development of competitions in face
recognition, biometrics, and computer vision. He
was assigned to the Defense Advanced Projects
Agency (DARPA) as a Program Manager. His work

has been reported in print media of record, including the New York Times
and the Economist. He has appeared on National Public Radio’s Science
Friday. He won the Inaugural IEEE Mark Everingham Prize, the 2018 IEEE
Biometric Council Leadership Award, and the Department of Commerce Gold
Medal. He is an Associate Editor of IEEE TRANSACTIONS ON BIOMETRICS,
BEHAVIOR, AND IDENTITY SCIENCE; was an Associate Editor for the IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE;
and a Guest Editor of an issue of the PROCEEDINGS OF THE IEEE. He is a
Fellow of the IAPR.

Carlos D. Castillo (Member, IEEE) received
the Ph.D. degree in computer science from
the University of Maryland (UMD), College
Park, in 2012. He is currently an Associate
Research Professor with the Electric and Computer
Engineering Department, Johns Hopkins University.
Prior to that, he was an Assistant Research Scientist
with the UMD from 2014 to 2020. He has done
extensive work on face and activity detection and
recognition for over a decade and has both industry
and academic research experience. He was involved

with the UMD teams in IARPA JANUS from 2014 to 2020, and IARPA
DIVA in 2017. The software he developed under IARPA JANUS has been
transitioned to many USG organizations, including Department of Defense,
Department of Homeland Security, and Department of Justice. In addition, the
UMD JANUS system is being used operationally by the Homeland Security
Investigations Child Exploitation Investigations Unit to provide investigative
leads in identifying and rescuing child abuse victims, as well as catching and
prosecuting criminal suspects. The technologies his team developed provided
the technical foundations to a spinoff startup company: Mukh Technologies
LLC which creates software for face detection, alignment and recognition.
His current research interests include face and activity detection and recog-
nition, high reliability AI systems, and accountable deep learning. He was
a recipient of the Best Paper Award at the International Conference on
Biometrics: Theory, Applications and Systems in 2016. In 2018, he received
the Outstanding Innovation of the Year Award from the UMD Office of
Technology Commercialization.

Alice J. O’Toole received the B.A. degree in psy-
chology from the Catholic University of America,
Washington, DC, USA, in 1983, and the M.S.
and Ph.D. degrees in experimental psychology from
Brown University, Providence, RI, USA, in 1985
and 1988, respectively. She is a Professor with the
School of Behavioral and Brain Sciences, University
of Texas at Dallas and currently holds the Aage and
Margareta Moller Endowed Chair. Subsequently, she
was a Postdoctoral Fellow with the Université de
Bourgogne, Dijon, France, supported by the French

Embassy to the United States, and at the Ecole Nationale Superieure des
Télécommunications, Paris, France. After postdoctoral work, she came to the
University of Texas at Dallas, where she established a laboratory for visual
perception and face/object recognition experiments. Over the last 25 years,
she has published over 100 peer-reviewed manuscripts spanning the fields of
psychology, neuroscience, and computational vision. Her research has been
funded by the NIJ, NIST, TSWG, DARPA, IARPA, NEI, and by an award from
an Alexander von Humboldt Foundation. She currently serves as an Associate
Editor for the British Journal of Psychology and the IEEE Transactions on
Biometrics, Behavior, and Identity Science. She is a fellow of the Association
for Psychological Science.

Authorized licensed use limited to: Yunnan University. Downloaded on July 25,2025 at 07:38:42 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


