
Deep Neuromorphic Controller with Dynamic Topology for Aerial Robots

Basaran Bahadir Kocer1, Mohamad Abdul Hady2, Harikumar Kandath3,
Mahardhika Pratama4∗, and Mirko Kovac1,5

Abstract— Current aerial robots are increasingly adaptive;
they can morph to enable operation in changing conditions to
complete diverse missions. Each mission may require the robot
to conduct a different task. A conventional learning approach
can handle these variations when the system is trained for
similar tasks in a representative environment. However, it may
result in overfitting to the new data stream or the failure
to adapt, leading to degradation or a potential crash. These
problems can be mitigated with an excessive amount of data
and embedded model, but the computational power and the
memory of the aerial robots are limited. In order to address
the variations in the model, environment as well as the tasks
within onboard computation limitations, we propose a deep
neuromorphic controller approach with variable topologies to
handle each different condition and the data stream with a
feasible computation and memory allocation. The proposed
approach is based on a deep neuromorphic (multi and variable
layered neural network) controller with dynamic depth and
progressive layer adaptation for each new data stream. This
adaptive structure is combined with a switching function to
form a sliding mode controller. The network parameter update
rule guarantees the stability of the closed loop system by
the convergence of the error dynamics to the sliding surface.
Being the first implementation on an aerial robot in this
context, the results illustrate the adaptation capability, stability,
computational efficiency as well as the real-time validation.

I. INTRODUCTION

A safe and efficient controller predominantly requires
specifications for dedicated aerial robots, a labor-intensive
tuning process, precise knowledge for the system and op-
eration environment, and the isolated task definitions [1].
However, such designs are not practical since variations are
inevitable, and the computation and memory sources are
limited. In order to address this problem, there is a need
to possess a computationally efficient learning approach that
is neither crafted for a particular task nor needs laborious
tuning for each new model and environment.

There are numerous approaches to ensure a safe flight.
The common preference is to leverage a mathematical

(Basaran Bahadir Kocer and Mohamad Abdul Hady contributed
equally to this work. This research was mainly carried out when B. B. Kocer,
M. A. Hady and H. Kandath were with SCSE, NTU, Singapore. )1The
authors are with the Aerial Robotics Laboratory, Imperial College London,
London SW7 2AZ, UK. 2Mohamad Abdul Hady is with Electrical Engi-
neering Department, Sepuluh Nopember Institute of Technology, Surabaya-
60111, Indonesia. 3Harikumar Kandath is with Robotics Research Center,
International Institute of Information Technology, Hyderabad-500032, India.
4Mahardhika Pratama is with the School of Computer Science and Engi-
neering, Nanyang Technological University, 50 Nanyang Avenue, Singapore.
5Mirko Kovac is with Materials and Technology Center of Robotics at
the Swiss Federal Laboratories for Materials Science and Technology,
Switzerland.∗ Corresponding Author.

model based on physical principles. However, the system
parameters and task requirements might change significantly
during the flight [2], [3]. Furthermore, the environmental
conditions may not be anticipated, which might degrade
the flight performance [4]. A flexible learning scheme for
an aerial robot might require physical and/or cybernetical
adaptation [5], [6]. In both cases, the system needs to
adopt environmental, physical, or task-based changes. For
the physical adaptation, there are initial studies proposed
with neuromorphic hardware [7]. This study aims to explore
the cybernetical adaptation, which includes system inputs,
outputs, and parameters, and it might require to estimate
associations between them using a limited number of obser-
vations. This is a more challenging problem if the association
needs to be estimated for one pass loops where there is no
labeled or unlabeled batch of data. A similar approach can
be seen in nature where the learning structure can be simple
and parsimonious to adapt a diverse set of tasks [8], [9].
However, it is still a troublesome work to provide a learning
scheme which can adopt new tasks for robots [10], [11].
Transfer learning can be a good candidate for this problem,
but most of the available frameworks consider fixed capacity
models [12].

Evolution in neural network weights and structure is an
active and on-going research [13]. It is a natural process in
animals where the adaptation occurs depending on the task,
environmental conditions, and the inner structure of the brain
[14]. Since the success of the learning heavily depends on the
proper selection of architecture and the connection weights,
it is critical to find the correct representation of the system
[15]. It is a resource and time consuming process to collect
the data and tune the connection weights even for a fixed
topology of multi-layer neural networks. One of the initial
studies explored the use of a spiking neural network (SNN)
on a neuromorphic chip [16]. A performance of multilayered
neural networks with adaptive weights is exhibited against
the wind in [17]. The architectural configuration is fixed
and a single task based on wind disturbance rejection is
addressed. An evolving SNN is simulated in [18] and tested
for a landing problem in [19]. To the best of our knowledge,
there is still a gap for deep neuromorphic multilayered neural
networks to be applied on aerial robots for various tasks. In
our proposed approach and contribution, the following points
are highlighted:

• We propose a deep neuromorphic controller with pa-
rameters derived based on a sliding surface and com-

978-1-7281-9077-8/21/$31.00 ©2021 IEEE

2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
May 31 - June 4, 2021, Xi'an, China

110

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n 
(I

C
R

A
) |

 9
78

-1
-7

28
1-

90
77

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

R
A

48
50

6.
20

21
.9

56
17

29

Authorized licensed use limited to: Yunnan University. Downloaded on July 21,2025 at 22:34:10 UTC from IEEE Xplore.  Restrictions apply. 



bined with a dynamic neural network which has self-
adjustment of network width (number of nodes) and
depth expansion (number of layers) capabilities.

• A novel network parameter adaptation law derived from
a sliding mode control design principle that satisfies the
conditions for Lyapunov stability.

• Real-time performance evaluation of the online self
reconstructed neural network controller, developed with
Pytorch library, and implemented onboard for the aerial
robot.

• A discussion on real time applicability for aerial robots
performing different tasks is provided for such a neu-
romorphic controller.

In section II, we present the considered problem which is
followed by the proposed framework in the section III. In
the results and discussion (section IV), the numerical inves-
tigations and experiments are discussed with the statistical
evaluations. Finally, we demonstrate a video1 that shows that
the learning with deep neuromorphic architecture is feasible
for aerial robots.

II. PROBLEM FORMULATION

For an aerial robot operation, various tasks could arrive
in sequence. When this is coupled with a model or environ-
mental changes, a fixed capacity model may fail. In order
to handle all these variations in a reasonable computational
burden, a neuromorphic approach can be adapted. However,
the following aspects need to be addressed: (i) avoiding to
grow a neural network model out of the computation limit
required for the aerial robot working frequency; (ii) deriving
the mechanism for the neural network layer expansion; (iii)
preventing the catastrophic forgetting problem where the
initial learning segment could be lost with the new data
stream; (iv) providing stability for the aerial robot.

Current aerial robots have integrated with the on-board
controller to stabilize the system at a lower level yet high-
frequency loop [20]. However, e.g., in the case of the
inspection, material deposition, or repair operation with an
interaction task under wind disturbances, the system needs
to fly autonomously while handling different tasks and the
variations. Therefore, in this work, it is our aim to design
a deep neuromorphic controller which is able to work in
different operating conditions to adapt to each new task
without any manual parameter tuning.

To formalize the bottlenecks of the aerial robot operations,
some modeling and control aspects are described further. As
a case study, a control system is constructed that can capture
different tasks and variations. It is assumed that the lower-
level control achieves tracking of reference commands in
all the three axes. On top of them, the deep neuromorphic
controller is developed to improve further the system perfor-
mance.

The position of the UAV is denoted by a vector P (t) =
[x(t), y(t), z(t)]T. In this work, the translational dynamics
along x-axis is considered to explain the control design. A

1https://www.youtube.com/watch?v=YaDJpo7EP-o

similar approach is applicable to the other axes and hence not
discussed here separately. When disturbances or uncertainties
are present, the nonlinear system dynamics along x-axis can
be expressed as given below.

ẋ(t) = vx(t) (1)
ẍ(t) = v̇x(t) = ux(t) + f(vx(t), dx(t)) (2)

where vx(t) is the velocity and ux(t) is the control input
and dx(t) is the unknown disturbance. The f(vx, dx) is an
unknown function representing the acceleration due to drag
and the other unknown disturbances dx(t) and uncertainties.
The following are the assumptions made in this paper.
Assumption I: The upper bound on the magnitude of the
function f(vx(t), dx(t)) is unknown.
Assumption II: The control input ux(t) of the translational
dynamics is tracked by a suitable controller employed in the
inner loop dynamics.

The upper bound on the unmodelled forces, especially
those generated due to the interaction of objects in the close
proximity of the rotating propeller and other aerodynamic
disturbances, are hard to quantify. The inner loop rotational
dynamics are faster when compared to the outer loop transla-
tional dynamics. So the desired velocity input or acceleration
input denoted by ux(t) is tracked by the inner loop controller.
The inner loop controller takes the form of a PID controller
and is implemented using the conventional technique of
successive loop closure applied to multirotor UAVs [21].

The case study for our learning approach is to design a
deep neuromorphic controller for the translational dynamics
given by (1) and (2) that can adapt to different tasks and
conditions without re-tuning for each scenario. The scenarios
considered here are i) to track a desired circular trajectory
in the presence of unknown disturbance inputs like wind
gusts and ii) tracking the desired altitude in the presence
of interaction effects generated due to the proximity of
the ceiling and ground to the UAV. A deep neuromorphic
controller is proposed, where the number of layers, nodes,
and the parameters of the neural network are having self-
adjustment ability ensuring stable closed loop dynamics. The
notation ”(t)”, explicitly denoting the variables as a function
of time, is dropped in the subsequent sections of this paper
for the sake of simplicity.

III. ONLINE RECONSTRUCTION AND LEARNING OF DEEP
NEURAL NETWORK BASED CONTROLLER

The proposed controller has a control input ux comprising
of a switching function (us) and the output from a deep
neuromorphic controller (DNC) (unn). The DNC is a deep
neural network consisting of an input layer, l-number of
expandable hidden layers and m-number of adjustable nodes,
and a linear single output layer. The tanh(.) activation
function is selected for each node of the hidden layers that
keep the output between -1 and 1. The topology of the
evolution of the morphing deep neural network is presented
in Fig. 1. The DNC takes four inputs consisting of the
reference and the error horizon in three steps. The output
of the network is the control signal for the dedicated axis.

111

Authorized licensed use limited to: Yunnan University. Downloaded on July 21,2025 at 22:34:10 UTC from IEEE Xplore.  Restrictions apply. 



The DNC has the following three features: i) adaptation of
network parameters; ii) expansion of network layer; and iii)
growing or pruning of nodes in the layer. Each of these
features are explained in the below sections.

A. Adaptation of Network Parameters and Stability

The network parameters of the DNC are updated to ensure
that the proposed controller given in (3) takes the form of a
sliding mode controller (SMC).

ux = us + unn (3)

Following the traditional SMC, let the control input be
expressed as the sum of two inputs, as given below.

ux = us + ueq (4)

where us is a switching function of magnitude k as given
below.

us = k sgn(ς) (5)

where ς is the sliding surface expressed by

ς = ė+ γe (6)

where e = xr−x is the tracking error with xr the reference
signal and the constant γ > 0. The input ueq is the equivalent
control during sliding phase where ς = 0 and ς̇ = 0 [22].
Using (6), it follows that

ς̇ = ë+ γė = ẍr − ẍ+ γė = 0 (7)

From (2) and noting that us = 0 during sliding phase, (7)
can be rewritten as

ẍr − f(vx, dx)− ueq + γė = 0 (8)

from which the expression for equivalent control

ueq = ẍr − f(vx, dx) + γė (9)

For the convergence of the reaching phase to sliding phase,
a Lyapunov function (L) is defined as given below.

L =
1

2
ς2 (10)

L̇ = ςς̇ = ς(ẍr − f(vx, dx)− us − ueq + γė) (11)

Using (9), we obtain

L̇ = ς(−us) (12)

By choosing k > 0, it can be verified that L̇ < 0, ∀ς 6= 0.
However, to apply this control we need to know f(vx, dx) as
seen from (9). Alternatively, if we know the upper bound on
the magnitude of (vx, dx) denoted by fxm, i.e. |f(vx, dx)| <
fxm, then it can be verified that choosing ueq = ẍr + γė
and us = fxm sgn(ς) yields L̇ < 0, ∀ς 6= 0. According to
Assumption 1, fxm is unknown. So in the proposed method,
the neural network approximates the equivalent control (ueq)
given in (9) using a gradient based network adaptation
technique as described below.

In the proposed method ux = us + unn, where us is
given by (5) and if unn = ueq then the condition ςς̇ < 0
is achieved. The procedure for updating the weights of

the neural network is based on minimizing the difference
between unn and ueq, expressed as a quadratic function J
as given below.

J =
1

2
(ueq − unn)2 (13)

Let the neural network output be expressed as

unn = Γ(W,U) (14)

where U is the input to the network, W is the vector of
adjustable parameters (weights), and Γ(.) is a nonlinear
function. Following the gradient descent method for updating
the network parameters, we obtain the following update rule.

Ẇ = −α∇JW (15)

where α > 0 is the learning rate. Taking gradient of (13)
with respect to W gives

∇JW = −(ueq − unn)
∂unn

∂W
(16)

when ux = us + unn, then

ς̇ = ueq − us − unn (17)

From the above equation, we obtain

ueq − unn = ς̇ + k sgn(ς) (18)

Using equations (14) to (18), the parameter update rule
given in (15) becomes

Ẇ = α(ς̇ + k sgn(ς))
∂Γ(W,U)

∂W
(19)

Let the input to the network U belong to a compact set
denoted by Ωu. Then, using the universal approximation
property of the neural network [23], it follows that the error
in approximation is bounded after a finite time t > tl for
some W = W ∗, i.e.

max
U∈Ωu

|ueq − Γ(W ∗, U)| < ε (20)

for t > tl where ε > 0 is a finite bound on the network
approximation error. For t > tl,

ςς̇ = ς(ueq − unn − us) (21)

Using (5) and (20), the above equation can be written as

ςς̇ < |ς|ε− ςk sgn(ς) (22)

which implies ςς̇ < 0 for k > ε. So the convergence of
the system to the sliding surface depends upon the network
approximation error. From (19), Ẇ = 0 when (ς, ς̇) = (0,0)
or when ς̇ = −k sgn(ς). The condition ς̇ = −k sgn(ς)
implies the stability condition ςς̇ < 0.

112

Authorized licensed use limited to: Yunnan University. Downloaded on July 21,2025 at 22:34:10 UTC from IEEE Xplore.  Restrictions apply. 



Stages:
Grow
Node

Initial
Structure

Expand
Layer

Grow
Node

: Newly added node : Pruned node: Input node : Hidden node : Output node

Prune
Node

Optimum
Structure

width adjustment only for latest hidden layer

Fig. 1: The structure of the proposed approach: the initial configuration consists of one hidden layer and one node. In this representation, the input of the
network is reference and error history in 3 steps. When the neural network model does not capturing the new features of the online data stream, a new
configuration can be expected. For growing the node, the condition (28) needs to be satisfied. Similarly, for expansion of the layer, it is required to match
the condition (33). To avoid overfitting, a pruning is activated when the condition (30) is satisfied.

B. Online Deep NN Topology Evolution Mechanism

DNC features an elastic network structure where its net-
work structure is self-organized via the hidden node/layer
growing and pruning mechanism on the fly while engaging
in the control action. This step is performed via the bias-
variance decomposition technique where high bias exhibits
the under-fitting condition addressed by the addition of new
nodes while high variance signifies the over-fitting situation
overcome by the removal of inactive nodes. The network
bias (βN ) is derived from (18) estimating the deviation of
perfect control action. On the other hand, the variance (VN )
is calculated by applying the recursive mean and variance
formula with a forgetting factor (λf ) to the network bias.
Both network bias and variance are mathematically expressed
as follows.

βN = ς̇ + us (23)

µNβ = (1− 1

ωN
)µN−1
β + (

1

ωN
)βN (24)

ωN = λfωN−1 + 1 (25)

VN =
1

ωNs

Nw∑
i=1

λ
(N−i)
f [βN − µNβ ]2 (26)

ωNs =
2λf (1− λ(N−1)

f )

(1− λf )(1 + λf )
(27)

where both of which can be executed in the one-pass fashion
with a sliding window (Nw) for the variance, thereby being
compatible for hardware implementation, µNβ is the mean
value for the network bias and N is total number of time
samples.

1) Layer Width Adjustment Mechanism: The node grow-
ing strategy is based on the high bias condition identified by
the modified statistical process control (SPC) approach. The
SPC method is commonly found in the anomaly detection
tasks and is applied here to identify the high bias condition.
It is mathematically written as follows.

µNβ + σNβ ≥ µmin
β + πσmin

β (28)

where σNβ is the standard deviation of βN and µminβ , σminβ

are the lower bounds of µNβ and σNβ respectively. The

underlying difference with the conventional SPC method lies
in the presence of the parameter π leading to the dynamic
confidence level of the statistical test. π is formulated as
follows:

π = 1.3 exp
(
−(βN )2

)
+ 0.7 (29)

A new node is inserted into the network if (28) is satisfied.
The use of π allows flexible approach where the hidden
node growing strategy occurs frequently in the high bias
condition lowering the confidence level to 68.2% due to
π ≈ 1. On the other hand, it becomes strict in the low bias
condition resulted from the confidence level around 95.2%
as a result of π ≈ 2. Furthermore, µminβ , σminβ are reset if
(28) is met. The hidden node pruning module is triggered if
high variance condition is come across. As with the growing
condition, the modified SPC technique is utilized for the
pruning mechanism and written as follows

µNV + σNV ≥ µmin
V + 2χσmin

V (30)

where the parameter χ is akin to π except the fact that the
βN is replaced by VN . The hidden node pruning strategy
is activated once (30) is satisfied. The node to be pruned
is the i− th node with the lowest node contribution (NCi)
calculated from the L2 norm of its consecutive weights (Wi).

NCi = ||Wi||2 (31)

The node having the lowest statistical contribution is
obtained from (31). Hence, the j-th node is pruned if the
condition arg mini∈[1,2,3,..,n](NCi) = NCj is satisfied.

2) Network Depth Expansion Mechanism: The layer ex-
pansion strategy is governed by the concept drift detection
method identifying the significant change in the data stream,
an indication of a heavy shift in dynamics of the UAV,
environmental changes like disturbances, or a new task. This
implies that the existing model capacity has to be expanded
to accommodate the new concept. The addition of a new
layer is called for because it is capable of enhancing the
model capacity significantly as compared to the addition of
new nodes [24]. This method is performed by first finding the
gradient of mean bias over preceding evaluation window E
denoted as ∇Eβ , to detect whenever the mean bias (µEβ ) starts

113

Authorized licensed use limited to: Yunnan University. Downloaded on July 21,2025 at 22:34:10 UTC from IEEE Xplore.  Restrictions apply. 



to increase during saturated performance. It is formulated as
follows.

∇Eβ =
µEβ − µ

E−1
β

∆t
(32)

where ∆t is the time duration of an evaluation window. A
statistical test is derived with the null hypothesis to confirm
that the gradient of mean bias is increasing (∇Eβ > 0) and
occurring under saturated performance, denoted as

|∇Eβ −∇minβ | < R

µEV

√
1

2E
ln

1

δ
(33)

where R = ∇maxβ −∇minβ is the range of gradient bias and
δ is the confidence level for layer adaptation (is set 0.05 to
achieve 95%). When the condition (33) is satisfied and∇Eβ >
0, a new fully-connected hidden layer is added by copying
the latest hidden layer and stored as the closest hidden layer
to the output layer. The parameters of the new layer are
initialized to unity.

IV. RESULTS AND DISCUSSION

A. Numerical Investigations

Two different tasks are defined in the Gazebo environment:
1) hover and 2) tracking of circular trajectories. In the first
phase, our approach was tested for hover. After keeping the
system in the hover phase for 200 s, the resulting config-
uration is stored. Afterward, a new trajectory is defined,
consisting of a circle in two different velocities. In this
case, the stored configuration is fixed for nodes, layers,
and weights. At the same time, learning from scratch for
neuromorphology, as well as the stored weights, are tested for
the same condition. To avoid the chattering effects typically
associated with the switching function, it is replaced by
a saturation function during the implementation, as given
below.

us = k sat(
ς

ςm
) (34)

where ςm > 0 and sat( ς
ςm

) = ς
ςm

for |ς| ≤ ςm. For |ς| > ςm,
sat( ς

ςm
) = sgn(ς). The parameters used for the evaluations

are given in Table I.

TABLE I: List of Parameters

us, (X, Y, Z) kx = ky = 0.45, kz = 0.85, ςm = 0.4
Learning rate (X, Y, Z) αx = 0.0125, αy = 0.0125, αz = 0.25
Forgetting factor λf = 0.98
Sliding Window Nw = 100
Evaluation Window E = 300
Layer expansion δ = 0.05

To abide by the page limit, only the Y-axis results are
presented to show the effectiveness of adaptive configuration.
In the first half of the trajectories, the system tracks a slow
trajectory followed by a faster one in the second half, as
seen in Fig. 2. Since the fixed configuration is learned in the
hover phase, it can track the slower references. However, the
fixed-capacity model could not capture a comparably faster
trajectory. On the contrary, the deep neuromorphic approach
could track both the phases.

0 50 100 150 200

Time (s)

-1

-0.5

0

0.5

1

Y
 (

m
)

Reference Robot pose

(a) Fixed capacity model for Y-axis.

0 50 100 150 200

Time (s)

-1

-0.5

0

0.5

1

Y
 (

m
)

Reference Robot pose

(b) Fully adaptive model for Y-axis.

Fig. 2: Tracking of trajectories with deep neuromorphic controller.

In order to achieve this tracking performance, the proposed
approach learned the control signal, as can be seen in Fig. 3.
In Fig. 3a, the fixed capacity model is not able to drive the
error dynamics to the sliding surface. In the fully learning
case (Fig. 3b), the neuromorphic controller takes over the
control effort and decreases the tracking error in time. This
indicates that the error dynamics is converging to the sliding
surface as the magnitude of us is reducing progressively
from Fig. 3b. The network topology of the controller for this
condition is given in Fig. 4. In order to adapt to the changes
in the task, the neuromorphic approach utilizes node growing
and pruning, together with the weight adaptation. There is
an increase in the number of nodes from 1 to 2 after 30
s and 100 s when the reference input changes. Since the
change in the task is not in the level of concept drift, the
layer adaptation is not observed for this case.

0 50 100 150 200

Time (s)

-0.4

-0.2

0

0.2

0.4

Y
-C

o
n
tr

o
l 

si
g
n
al

(a) Control signals of the fixed capacity
model.

0 50 100 150 200

Time(s)

-1

-0.5

0

0.5

Y
-C

o
n

tr
o

l 
si

g
n

al

(b) Control signals of the fully adaptive
model.

Fig. 3: Learning of control signals with deep neuromorphic controller.

0 50 100 150 200

Time (s)

1

1.5

2

2.5

3

Y
-N

eu
ro

m
o
rp

h
o
lo

g
y

Layer

Node

(a) Configuration of the fixed capacity
model.

0 50 100 150 200

Time(s)

1

1.5

2

2.5

3

Y
-N

eu
ro

m
o

rp
h

o
lo

g
y

Layer

Node

(b) Layer and node adaptation for fully
adaptive model.

Fig. 4: Topology of the network.

B. Experimental Results

Considering various tasks, such as tracking, wind gust
rejection, and surface interaction, a set of experiments are
defined. The wind gust rejection is simulated through an

114

Authorized licensed use limited to: Yunnan University. Downloaded on July 21,2025 at 22:34:10 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5: Circular trajectory tracking: statistical evaluations.

industrial fan and surface interaction is represented through
a transparent ceiling. For the real time feasibility, a batch of
data is collected, and the computation times are recorded.
When the system works with less number of layers (≈3),
the computations are in milliseconds range, and goes up to
seconds, when the number of layers are increased signifi-
cantly (>8). The proposed approach is embedded to quad-
core Intel NUC for the experimental evaluations with the
onboard/hardware settings presented in [25]. Since the track-
ing results are very similar to the numerical investigations,
the experimental results are given with statistical evaluations
in Fig. 5. For this phase, the wind gust condition is also
considered. Similarly, the fixed-capacity model could not
handle the variations and lose the flexibility of capturing the
new data stream to learn the driving mechanism of various
tracking cases. Furthermore, layer adaptation is observed in
real time experiments, which were different than the simu-
lations in Gazebo since there are more unexpected changes
and uncertainties in real time. Two different cases are given
in Fig. 6. In these experiments, the learning scheme is trying
to handle the variations for the wind gust disturbance while
tracking the defined circular trajectory. As compared to the
disturbances that might be represented in a static manner, the
neural network model initiates the layer expansion to handle
the wind gust disturbance.

0 50 100 150 200

Time (s)

1

2

3

4

X
-N

eu
ro

m
o
rp

h
o
lo

g
y

Layer

Node

(a)

0 50 100 150 200

Time (s)

1

2

3

4

X
-N

eu
ro

m
o
rp

h
o
lo

g
y

Layer

Node

(b)

Fig. 6: DNC topology: These data are with the circular tracking results while
resisting against the wind gust disturbance in two different experiments.

C. Discussion

During the implementation phase, it is observed that if
the learning rate is high, the model adapts to the data

stream quickly, but it leads to over-fitting conditions (high
variance) when the task is changed. When the learning rate is
low, the adaptation becomes slower, and that leads to slow
convergence of the error dynamics to the sliding surface.
To overcome the aforementioned issue, a weight decay
regularization method (adding a damping term ”−ρW ” to
(19) with ρ > 0) is employed. Also, our approach is an
online continuous learning that does not implement any stop-
ping criteria for learning. Therefore, the implementation of
regularization method is crucial for our approach. Based on
our observations from simulations, the weight decay factor
(ρ) is set to 0.125× 10−3. If the tasks are not expecting too
many sudden changes, the learning rate α ∈ {0.0125, 0.25}
is satisfactory for real-time experiments. In general, the layer
addition is observed during a sudden disturbance like a wind
gust. The first instant is quite challenging since the node
weights need to be initialized. In this implementation, we
tested available initialization approaches and ended up with
unitary weight since it was the most efficient one. Another
effective parameter is the coefficient k (bound on us), and
various values are tested, and they affect the learning. The
higher values might cause the system to learn a slightly
aggressive controller while it could be sluggish with very
low values. The system can learn as the tested parameters
change between 0.45 and 0.85.

V. CONCLUSION

We demonstrated a deep neuromorphic controller lever-
aging dynamic topology for both neural network layers
and nodes. With the help of the stabilizing conditions, the
proposed neuromorphic approach could learn different tasks,
variations, and the uncertainties in the system dynamics
and environmental conditions. This is a promising approach,
particularly for the repetitive tasks under varying environ-
mental conditions or tasks that change over a period of time.
The realistic numerical investigations and the initial exper-
iments showed that our approach could learn the changes
in the tasks without destabilizing the system. Moreover, the
computational aspects are investigated, and it is found that
the current onboard approaches can leverage the proposed
approach since it does not come with a high computational
burden when experimented over different cases. In our future
work, we intend to collect the data to a cloud system and
share the knowledge for each new robot [26].

ACKNOWLEDGMENT

The research work is supported by the Nanyang Tech-
nological University internal grant for the development
of a large VTOL research platform. We thank Mr. Peter
Zheng for proofreading, corrections and the visual sup-
ports. We acknowledge the funding of EPSRC (award no.
EP/R009953/1, EP/L016230/1 and EP/R026173/1), NERC
(award no. NE/R012229/1) and the EU H2020 AeroTwin
project (grant ID 810321). Mirko Kovac is supported by the
Royal Society Wolfson fellowship (RSWF/R1/18003).

115

Authorized licensed use limited to: Yunnan University. Downloaded on July 21,2025 at 22:34:10 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra,
and K. S. Pister, “Low-level control of a quadrotor with deep model-
based reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 4224–4230, 2019.

[2] W. Zhang, M. Brunner, L. Ott, M. Kamel, R. Siegwart, J. Nieto,
J. Roberts, and P. Pounds, “Learning dynamics for improving con-
trol of overactuated flying systems,” IEEE Robotics and Automation
Letters, 2020.

[3] P. Zheng, X. Tan, B. B. Kocer, E. Yang, and M. Kovac, “Tiltdrone:
A fully-actuated tilting quadrotor platform,” IEEE Robotics and Au-
tomation Letters, vol. 5, no. 4, pp. 6845–6852, 2020.

[4] F. Xiao, P. Zheng, J. d. Tria, B. B. Kocer, and M. Kovac, “Optic
flow-based reactive collision prevention for mavs using the fictitious
obstacle hypothesis,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3144–3151, 2021.

[5] D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466,
2015.

[6] D. Isele, J. M. Luna, E. Eaton, V. Gabriel, J. Irwin, B. Kallaher, and
M. E. Taylor, “Lifelong learning for disturbance rejection on mobile
robots,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016, pp. 3993–3998.

[7] H. Blum, A. Dietmüller, M. Milde, J. Conradt, G. Indiveri, and Y. San-
damirskaya, “A neuromorphic controller for a robotic vehicle equipped
with a dynamic vision sensor,” Robotics Science and Systems, RSS
2017, 2017.

[8] U. Hasson, S. A. Nastase, and A. Goldstein, “Direct fit to nature: An
evolutionary perspective on biological and artificial neural networks,”
Neuron, vol. 105, no. 3, pp. 416–434, 2020.

[9] M. Kovač, “The bioinspiration design paradigm: A perspective for soft
robotics,” Soft Robotics, vol. 1, no. 1, pp. 28–37, 2014.

[10] S. Thrun, “Is learning the n-th thing any easier than learning the first?”
in Advances in neural information processing systems, 1996, pp. 640–
646.

[11] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and A. C. Knoll, “A
survey of robotics control based on learning-inspired spiking neural
networks,” Frontiers in neurorobotics, vol. 12, p. 35, 2018.

[12] Y.-X. Wang, D. Ramanan, and M. Hebert, “Growing a brain: Fine-
tuning by increasing model capacity,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
2471–2480.

[21] A. M. Singh, D. J. Lee, D. P. Hong, and K. T. Chong, “Successive loop
closure based controller design for an autonomous quadrotor vehicle,”
in Applied Mechanics and Materials, vol. 483. Trans Tech Publ,
2014, pp. 361–367.

[13] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Machine Intelli-
gence, vol. 1, no. 1, pp. 24–35, 2019.

[14] G. Tang and K. P. Michmizos, “Gridbot: An autonomous robot
controlled by a spiking neural network mimicking the brain’s navi-
gational system,” in Proceedings of the International Conference on
Neuromorphic Systems, 2018, pp. 1–8.

[15] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary intelligence, vol. 1, no. 1, pp. 47–62,
2008.

[16] T. S. Clawson, S. Ferrari, S. B. Fuller, and R. J. Wood, “Spiking neural
network (snn) control of a flapping insect-scale robot,” in 2016 IEEE
55th Conference on Decision and Control (CDC). IEEE, 2016, pp.
3381–3388.

[17] M. Bisheban and T. Lee, “Geometric adaptive control with neural
networks for a quadrotor in wind fields,” IEEE Transactions on Control
Systems Technology, 2020.

[18] D. Howard and A. Elfes, “Evolving spiking networks for turbulence-
tolerant quadrotor control,” in Artificial Life Conference Proceedings
14. MIT Press, 2014, pp. 431–438.

[19] J. J. Hagenaars, F. Paredes-Vallés, S. M. Bohté, and G. C. De Croon,
“Evolved neuromorphic control for high speed divergence-based land-
ings of mavs,” IEEE Robotics and Automation Letters, vol. 5, no. 4,
pp. 6239–6246, 2020.

[20] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “Pixhawk: A
system for autonomous flight using onboard computer vision,” in 2011
IEEE International Conference on Robotics and Automation. IEEE,
2011, pp. 2992–2997.

[22] J.-J. E. Slotine, W. Li, et al., Applied nonlinear control. Prentice hall
Englewood Cliffs, NJ, 1991, vol. 199, no. 1.

[23] J. A. Farrell and M. M. Polycarpou, Adaptive approximation based
control: unifying neural, fuzzy and traditional adaptive approximation
approaches. John Wiley & Sons, 2006, vol. 48.

[24] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number
of linear regions of deep neural networks,” in Advances in neural
information processing systems, 2014, pp. 2924–2932.

[25] B. B. Kocer, M. E. Tiryaki, M. Pratama, T. Tjahjowidodo, and G. G. L.
Seet, “Aerial robot control in close proximity to ceiling: A force
estimation-based nonlinear mpc,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 2813–2819.

[26] B. Liu, L. Wang, and M. Liu, “Lifelong federated reinforcement learn-
ing: a learning architecture for navigation in cloud robotic systems,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4555–4562,

2019.

116

Authorized licensed use limited to: Yunnan University. Downloaded on July 21,2025 at 22:34:10 UTC from IEEE Xplore.  Restrictions apply. 


		2022-08-24T22:25:25-0400
	Preflight Ticket Signature




